Кто изобрел первый микроскоп: великие ученые или талантливые изобретатели?

Содержание:

Роберт Гук и его достижения

Следующая страница в истории создании микроскопа связана с именем Роберта Гука. Это был очень одаренный человек и талантливый ученый. Наиболее значимыми достижениями Гука являются следующие:

  • изобретение спиральной пружины для регулировки хода часов; создание винтовых зубчатых колес;
  • определение скорости вращения Марса и Юпитера вокруг своей оси; изобретение оптического телеграфа;
  • создание прибора для определения пресности воды; создание термометра для измерения низких температур;
  • установление постоянства температур таяния льда и кипения воды; открытие закона деформации упругих тел; предположение о волновой природе света и природе земного тяготения.

По окончании Оксфордского университета в 1657 г. Гук стал помощником Роберта Бойля. Это была отличная школа у одного из крупнейших ученых того времени. В 1663 г. Гук уже работал секретарем и демонстратором опытов Английского Королевского общества (академии наук). Когда там стало известно о микроскопе, Гуку поручили провести наблюдения на этом приборе. Имевшийся в его распоряжении микроскоп мастера Дреббеля являл собой полуметровую позолоченную трубу, расположенную строго вертикально. Работать приходилось в неудобной позе — изогнувшись дугой.

Виды микроскопов

Далее с развитием науки и техники стали появляться все более совершенные световые микроскопы, на смену первому световому микроскопу, работающему на основе увеличительных линз, пришел микроскоп электронный, а затем и микроскоп лазерный, микроскоп рентгеновский, дающие в разы более лучший увеличительный эффект и детализацию. Как же работают эти микроскопы? Об этом дальше.

Что такое «диафрагма микроскопа»: поговорим об осветительной системе

Для наблюдений микромира хорошее освещение настолько же важно, как и качество оптики микроскопа. Светодиоды, галогенные лампы, зеркало – для микроскопа могут использоваться разные источники освещения

У каждого есть свои плюсы и минусы. Подсветка может быть верхней, нижней или комбинированной. Ее расположение влияет на то, какие микропрепараты можно изучать при помощи микроскопа (прозрачные, полупрозрачные или непрозрачные).

Под предметным столиком, на который кладется образец для исследований, располагается диафрагма микроскопа. Она может быть дисковой или ирисовой. Диафрагма предназначена для регулировки интенсивности освещения: с ее помощью можно отрегулировать толщину светового пучка, идущего от осветителя. Дисковая диафрагма – это небольшая пластина с отверстиями разного диаметра. Ее обычно устанавливают на любительские микроскопы. Ирисовая диафрагма состоит из множества лепестков, с помощью которых можно плавно изменять диаметр светопропускающего отверстия. Она чаще встречается в микроскопах профессионального уровня.

История

История микроскопа может быть прослежена с конца 16-го или начала 17-го века. До сих пор ведутся споры о том, кто же на самом деле изобрел этот инструмент. Согласно новой всемирной энциклопедии, считается что прибор был предоставлен  производителями очков из Нидерландов: Хансу Липперши, Хансу и Захариасу Янсену.

Также Галилео Галилей в 1600-х годах изобрел устройство, внесшее свой вклад в область микроскопии. В его устройстве использовались линзы вогнутой и выпуклой формы.

Этот инструмент становился все более сложным с появлением науки и техники и теперь доступен в различных типах, которые используются для многих целей.

Наиболее распространенным среди них является самый старый и простейший тип микроскопа, называемый оптическим или световым микроскопом, который имеет три типа – простой, сложный свет и стерео.

Строение микроскопа

На данный момент существуют простые и сложные микроскопы. Первые работают с одной системой линз, именно такое строение получила лупа. В сложном же сочетают две простейшие линзы. Поговорим немного о последнем варианте.

Сложный микроскоп будет давать большее увеличение, также он имеет хорошую разрешающую способность. Именно благодаря ей можно различать элементы образцов. Например, клетка под микроскопом сложной конструкции будет идеально разложена на составляющие. Увеличенное изображение, где нельзя различать подробности, никакой полезной информации не несет.

Большая часть сложных микроскопов основана на двухступенчатых схемах. Одна линза подносится практически вплотную к объекту, то есть благодаря ей и создается увеличенное изображение. После при помощи окуляра, то есть другой системы линз, само изображение увеличивается. Именно он располагается ближе к глазу наблюдателя. Описанные системы линз должны находиться на разных концах тубуса прибора.

Когда появился первый микроскоп?

История возникновения устройства уходит корнями в далекую старину. Способность изогнутых поверхностей отражать и преломлять солнечный свет была замечена еще в III столетии до нашей эры исследователем Евклидом. В своих работах ученый нашел объяснение зрительного увеличения предметов, но тогда его открытие не нашло практического применения.

Самая ранняя информация о микроскопах восходит к XVIII веку. В 1590 году нидерландский мастер Захарий Янсен поместил в одну трубку две линзы от очков и смог увидеть предметы, увеличенные от 5 до 10 раз

Позже известный исследователь Галилео Галилей изобрел подзорную трубу и обратил внимание на интересную особенность: если ее сильно раздвинуть, то можно существенно увеличить небольшие объекты

Как устроен микроскоп

Классический микроскоп состоит из трех основных частей: оптической, осветительной и механической. Оптическая часть – это окуляры и объективы, осветительная – источники освещения, конденсор и диафрагма. К механической части принято относить все остальные элементы: штатив, револьверное устройство, предметный столик, систему фокусировки и многое другое. Все вместе и позволяет проводить исследования микромира.

Это интересно: 2424,Кто они народы монголоидной расы?

Работать с ювелирной точностью

Levenhuk 1ST Увеличение 20 крат Бинокулярный микроскоп — смотрят оба глаза. Они не напрягаются так сильно, как при работе с одним окуляром. Микроскоп не подойдет, чтобы поупражняться в биологии. Он для металлов, минералов и других плотных объектов. Дает стереоскопическое изображение — вы увидите объемную картинку.
Levenhuk DTX 30 Увеличение 20—230 крат Микроскоп, который легко захватить с собой и подключить к ноутбуку. Питается от USB разъема. Размер матрицы 2 мегапикселя. Камера снимает с разрешением 1600×1200 пикселей — подходит для Ютуба. В комплекте идет программа для работы с фото и видео.
Levenhuk DTX 500 LCD Увеличение 20—500 крат Микроскоп для работы там, где нужна ювелирная точность. Он выводит изображение на свой экран. Модель автономная. Встроенного аккумулятора хватит на два часа непрерывной работы. Также питается от сети. Есть похожие модели классом ниже — без экрана, с меньшим увеличением и дешевле.

Кто соорудил первую модель оптического устройства?

Настоящий научно-технический прорыв в развитии микроскопа произошел в XVII веке. В 1619 году голландский изобретатель Корнелиус Дреббель придумал микроскоп с выпуклыми линзами, а в конце столетия другой нидерландец – Христиан Гюйгенс – презентовал свою модель, в которой можно было регулировать окуляры.

Более совершенное устройство было придумано изобретателем Антони Ван Левенгуком, который создал прибор с одной большой линзой. На протяжении последующих полутора столетий это изделие давало наивысшее качество изображения, поэтому Левенгука нередко называют изобретателем микроскопа.

Виды приборов

Просвечивающая электронная микроскопия

Основная статья: Просвечивающий электронный микроскоп

В просвечивающем электронном микроскопе используется высокоэнергетический электронный пучок для формирования изображения. Электронный пучок создается посредством катода (вольфрамового, LaB6, Шоттки или холодной полевой эмиссии). Полученный электронный пучок ускоряется обычно до 80—200 кэВ (используются различные напряжения от 20 кВ до 1 МВ), фокусируется системой магнитных линз (иногда электростатических линз), проходит через образец так, что часть электронов рассеивается на образце, а часть — нет. Таким образом, прошедший через образец электронный пучок несет информацию о структуре образца. Далее пучок проходит через систему увеличивающих линз и формирует изображение на люминесцентном экране (как правило, из сульфида цинка), фотопластинке или ПЗС-камере.

Разрешение ПЭМ лимитируется в основном сферической аберрацией. Некоторые современные ПЭМ имеют корректоры сферической аберрации.

Основными недостатками ПЭМ являются необходимость в очень тонком образце (порядка 100 нм) и неустойчивость(разложение) образцов под пучком.

Просвечивающая растровая (сканирующая) электронная микроскопия (ПРЭМ)

Основная статья: Просвечивающий растровый электронный микроскоп

Один из типов просвечивающей электронной микроскопии (ПЭМ), однако есть приборы работающие исключительно в режиме ПРЭМ. Пучок электронов пропускается через относительно тонкий образец, но, в отличие от обычной просвечивающей электронной микроскопии, электронный пучок фокусируется в точку, которая перемещается по образцу по растру.

Растровая (сканирующая) электронная микроскопия

Основная статья: Растровый электронный микроскоп

В основе лежит телевизионный принцип развёртки тонкого пучка электронов по поверхности образца.

Окрашивание

Основная статья: Растровый электронный микроскоп

В своих наиболее распространенных конфигурациях, электронные микроскопы дают изображения с отдельным значением яркости на каждый пиксель, с результатами, как правило, изображенными в оттенках серого. Однако, часто эти изображения затем раскрашены посредством использования программного обеспечения, или просто ручным редактированием с помощью графического редактора. Это делается обычно для эстетического эффекта или для уточнения структуры и, как правило, не добавляет информацию об образце.

Ультраструктура неонатальных кардиомиоцитов после аноксии-реоксигенации

В некоторых конфигурациях о свойствах образца можно собрать больше информации на каждый пиксель, благодаря использованию нескольких детекторов. В СЭМ, атрибуты топографии и рельефа материала могут быть получены с помощью пары электронных детекторов отражения и такие атрибуты могут быть наложены в единое цветное изображение, с присвоением разных первичных цветов для каждого атрибута. По аналогии, сочетаниям отраженного и вторичного электронного сигнала могут быть присвоены различные цвета и наложены на один цветной микрограф, одновременно показывающий свойства образца.

Изображение муравья в сканирующем электронном микроскопе

Некоторые типы детекторов, используемых в СЭМ, имеют аналитические возможности и могут обеспечить несколько элементов данных на каждом пикселе. Примерами являются детекторы, используемые в элементном анализе, и системы катодолюминесцентных микроскопов, которые анализируют интенсивность и спектр электронно-стимулированной Люминесценция в (например) геологических образцах. В системах СЭМ использование этих детекторов является общим для цветового кода сигналов и накладывают их в единое цветное изображение, так что различия в распределении различных компонентов образца можно ясно видеть и сравнивать. Дополнительно, стандарт вторичных электронных изображений может быть объединен с одним или более композиционными каналами, так что можно сравнить структуру и состав образца. Такие изображения могут быть сделаны с сохранением полной целостности исходного сигнала, который не изменяется в любом случае.

Раскрашенное изображение (PЭМ) фильтрующих щетинок антарктического криля

С этим читают

Виды микроскопов

На сегодняшний момент существует множество разновидностей данного прибора. Микроскопы бывают: оптические и электронные, рентгеновские и сканирующие зондовые. Есть также дифференциальный интерференционно-контрастный микроскоп.

Оптические приборы в свою очередь делятся на ближнепольные, конфокальные и двухфотонные лазерные микроскопы. Электронные подразделяются на просвечивающие и растровые устройства. Сканирующие представляют собой совокупность атомно-силовых и туннельных микроскопов, а рентгеновские приборы бывают лазерными, отражательными и проекционными.

Естественной оптической системой является глаз человека. При этом она характеризуется точным разрешением. Нормальное разрешение для обычного глаза составляет примерно 0,2 мм. Это характерно при удалении объекта на расстояние оптимального видения, которое составляет 250 мм. Стоит заметить, что размеры животных и растительных клеток, различных микроорганизмов, деталей структуры металлов и разного рода сплавов, а также мелких кристаллов намного меньше нормального разрешения для человеческого глаза.

Ученые примерно до середины прошлого века использовали в работе только видимое оптическое излучение, диапазоном от четырехсот до семисот нанометров. Иногда применялись приборы с ближним ультрафиолетом. Получается, что оптические микроскопы способны различать вещества с расстоянием между элементами до 0,20 мкм, а это значит, что он может добиться максимального увеличения 2000 крат.

В электронных устройствах для увеличения используется пучок электронов, обладающих волновыми свойствами. При этом электроны достаточно легко можно сфокусировать при помощи электромагнитных линз, потому что они представляют собой заряженные частицы. К тому же электронное изображение не составит труда перевести в видимое.

У электронных устройств разрешающая способность в несколько тысяч раз превышает разрешение светового оптического микроскопа. А в современных приборах она может быть даже менее десяти нанометров.

Сканирующие зондирующие микроскопы – это класс приборов, работа которых основана на сканировании зондом различных поверхностей. Это достаточно новые устройства, изображение на которых получается при помощи фиксирования соприкосновений между поверхностью и зондом. На данный момент в таких устройствах удалось добиться фиксации взаимодействия зонда с некоторыми молекулами и атомами, что выводит сканирующий зондирующий микроскоп на уровень электронных приборов. А в некоторых показателях такие устройства даже превосходят их.

Рентгеновские микроскопы представляют собой прибор, позволяющий исследовать очень малые объекты, величины которых можно сопоставить с длиной рентгеновской волны. Работа такого прибора основана на электромагнитном излучении, имеющим длину волны до одного нанометра. Разрешающая способность рентгеновских устройств намного выше оптических, но ниже электронных микроскопов.

Кто изобрел микроскоп?

Микроскоп (греч. — малый, смотрю) — оптическое приспособления для рассмотрения предметов, не видимых невооруженных глазом, и получения их увеличенного изображения.

Все мы знакомы с этим прибором еще со школы, но не задумываемся, кто изобрел первый микроскоп — этот предмет, сыгравший очень важное значение в развитии науки. Кто изобрел микроскоп? Точный изобретатель микроскопа неизвестен

Разные ученые постепенно вносили свой вклад в совершенствование прибора, поэтому необходимо назвать несколько имен, связанных с его развитием

Кто изобрел микроскоп? Точный изобретатель микроскопа неизвестен. Разные ученые постепенно вносили свой вклад в совершенствование прибора, поэтому необходимо назвать несколько имен, связанных с его развитием.

  1. Ханс и Захарий Янсен — мастер очков и его сын из Голландии первыми заявили об изобретении микроскопа в 1509 году.
  2. Галилео Галилей — следующий, кому можно присвоить это звание. Он сконструировал так называемый «оккиолино» — составной микроскоп, состоящий из выпуклой и вогнутой линз в 1609 году.
  3. Корнелиус Дреббель — изобрел прибор с двумя выпуклыми линзами в 1709 году.
  4. Кристиан Гюйгенс — голландец, разработавший систему окуляров со способностью регулироваться ахроматически, которая стала большим шагом в развитии микроскопа. Произошло это в конце 1660-х.
  5. Роберт Гук — англичанин, тоже сделавший свой вклад, изобрев собственный микроскоп и опробовав его, рассмотрев пробку в 1665 году.
  6. Антон Ван Левенгук (1632-1723) — его изделия изготовлялись вручную, были небольшими и не очень удобными в использовании. Однако благодаря всего одной сильной линзе изображение можно было рассмотреть очень подробно, так как в них отсутствовал недостаток составных микроскопов — несколько линз приводили к дефекту изображения. Левенгук внес огромный вклад в развитие прибора, но все же и он не может быть назван его изобретателем.

Кто изобрел световой микроскоп? Немного истории

Что такое оптический микроскоп? Это лабораторная система, предназначенная для получения изображений малых объектов в увеличенном виде с целью их изучения, рассмотрения и практического применения. Мы начали нашу статью с истории развития микроскопа, сейчас же посмотрим на этот вопрос с другой стороны. В настоящее время такое устройство необходимо не только врачам и биологам.

Расскажем об одном достижении. В 2006 году немецкие ученые Мариано Босси и Штефан Хелль разработали наноскоп – сверхмощный оптический микроскоп, который позволяет исследовать объекты супермаленького размера в 10 Нм, а также получать 3D-изображения высочайшего качества.

Камера-обскура

Заканчивая разговор об оптических инструментах, необходимо упомянуть камеру-обскуру, изобретенную в 1420 г. итальянским инженером Дж. Фонтаной. Камера-обскура является простейшим оптическим приспособлением, позволяющим получать на экране изображения предметов. Это темный ящик с небольшим отверстием в одной из стенок, перед которым помещают рассматриваемый объект. Исходящие от него лучи света проходят через отверстие и создают на противоположной стене ящика (экране) перевернутое изображение объекта.

В 1558 г. итальянец Дж. Порта приспособил камеру-обскуру для исполнения рисунков. Ему же принадлежит идея применения камеры-обскуры для проецирования рисунков, помещенных у отверстия камеры и сильно освещаемых свечами или солнцем.

Обнаружения и открытия, строение клетки

Особый интерес в ней представляет наблюдение № 17 — «О схематизме, или строении пробки и о клетках и порах некоторых других пустых тел». Гук так описывает срез обыкновенной пробки: «Вся она перфорированная и пористая, подобно сотам, но поры ее неправильной формы, и в этом отношении она напоминает соты… Далее, эти поры, или клетки, неглубоки, но состоят из множества ячеек, разделенных перегородками».

В этом наблюдении бросается в глаза слово «клетка». Так Гук назвал то, что и сейчас называется клетками, например, клетки растений. В те времена люди не имели об этом ни малейшего представления. Гук первым наблюдал их и дал название, оставшееся за ними навсегда

Это было открытие громадной важности

разрешение

При использовании типичной 2-мегапиксельной ПЗС-матрицы создается изображение размером 1600 × 1200 пикселей. Разрешение изображения зависит от поля зрения объектива, используемого с камерой. Приблизительное разрешение в пикселях можно определить, разделив горизонтальное поле зрения (FOV) на 1600.

Увеличить разрешение можно за счет создания субпиксельного изображения. Метод сдвига пикселей использует привод для физического перемещения ПЗС-матрицы для получения нескольких перекрывающихся изображений. Комбинируя изображения в микроскопе, можно получить субпиксельное разрешение. Этот метод предоставляет информацию о подпикселях, усреднение стандартного изображения также является проверенным методом для получения информации о подпикселях.

17 век – время великих открытий (adsbygoogle = window.adsbygoogle || []).push({});

В указанном столетии произошла самая настоящая научно-техническая революция, которая и стала фундаментом большинства современных наук: биологии, медицины, физики, математики. Были сделаны грандиозные открытия и великие изобретения

Как раз в то время микроскопы заметно усовершенствовались и стали важной частью каждого исследователя. Но так никто точно и не сказал, кто изобрел микроскоп, кого считать его создателем

По одному из мнений, создателем рассматриваемого прибора является А. Кирхер, в 1646 году описавший устройство под названием «блошиное стекло». Из чего оно состояло? Это была лупа, закрепленная в основе из меди, которая держала предметный столик. В самом низу размещалось плоское зеркало, отражавшее свет и освещающее предмет. При помощи винта можно было перемещать лупу и настраивать изображение. Такое устройство стало прообразом современного светового микроскопа.

Первые оптические приборы

Ранние простые оптические приборы были с увеличительными стеклами и имели увеличение обычно около 6 x – 10 х.

В 1590 году, два голландских изобретателя Ганс Янсен и его сын Захарий при  шлифовке линз вручную обнаружили, что сочетание двух линз позволило увеличить изображение предмета в несколько раз.

Их первые устройства были новизной, чем научный инструмент, поскольку максимальное увеличение было до  9 х. Первый микроскоп, сделанный для голландской королевской знати  имел 3 раздвижные трубы, 50 см  в длину и 5 см в диаметре. Было указано, что устройство  имело увеличение от 3 x до  9 x когда полностью раскрыто.

Микроскоп Левенгука

Другой голландский ученый Антони ван Левенгук (1632-1723), считается одним из пионеров микроскопии, в конце XVII века стал первым человеком реально использовавшим  изобретение микроскопа на практике.

Ван Левенгук достиг большего успеха, чем его предшественники путем разработки способа изготовления  линзы путем шлифовки и полировки. Он достиг увеличения до 270 x, лучшее известное на то время. Это увеличение дает возможность  просматривать объекты размером  одна миллионная метра.

Антони Левенгук стал более активно участвовать в науке со своим новым изобретением микроскопа. Он мог видеть вещи, которые никто никогда не видел раньше. Он впервые  увидел бактерии, плавающие в капле воды. Он отметил ткани растений и животных, клетки спермы и клетки крови, минералы, окаменелости и многое другое. Он также обнаружил нематод и коловраток (микроскопических животных) и обнаружил бактерии, глядя на образцы зубного налета от своих собственных зубов.

Люди стали понимать, что увеличение может выявить структуры, которые никогда не видели раньше – гипотеза, что все сделано из крошечных компонентов, невидимых невооруженным глазом тогда еще не рассматривалась.

Работы Антони Левенгука в  дальнейшем развил английский ученый Роберт Гук, который опубликовал результаты микроскопических исследований «Микрография» в 1665 году. Роберт Гук описал подробные исследования в области микробиологии.

Англичанин Роберт Гук открыл микроскопическую веху и основную единицу всей жизни – клетку. В середине XVII века Гук увидел структурные клетки  во время изучения образца, который напомнил ему о небольших монастырских комнатах. Гуку также приписывают быть первым, который использовал конфигурацию трех основных  линз, как сегодня используют после изобретения микроскопа.

В 18-19 веках не так много изменений в конструкции основного микроскопа было введено. Были разработаны линзы  с использованием более чистого стекла и различной формы для решения таких проблем, как искажение цвета и разрешение плохого изображения. В конце 1800-х годов немецкий физик-оптик Эрнст Аббе обнаружил, что покрытые маслом  линзы предотвращают искажение света при высоком разрешении. Изобретение микроскопа помогло великому русскому учёному-энциклопедисту Ломоносову в середине 18 века   проводить свои опыты двигать русскую науку.

Наилучшие цифровые микроскопы

Данные приспособления отличаются широкой функциональностью. Они оснащены окулярами, а также спецкамерами. Картинка исследуемого предмета записывается в память либо передается непосредственно на экран ПК.

SAIKE DIGITAL SK2500TH2

Такое приспособление считается одной из наилучших моделей инструментального предназначения. Устройство дает возможность изучить плоские, прозрачные, крупные объекты. Оно может функционировать в прямом и отраженном светопотоке.

Характерной чертой приспособления считается панкреатический объектив. Благодаря ему возможно плавно изменить увеличение. Комфортная работа исследователю обеспечивается наглазниками из резины. Разработчик оснащает собственное изделие цифровой камерой от производителя Sony, обладающей высоким разрешением. Потому на экран будет передаваться реалистичное изображение без искажений.

Эксперты в сфере криминалистики, ювелиры удовлетворены качеством получаемой картинки, хорошим освещением и надежностью.

Плюсы:

  • высококачественное изображение;
  • эффективное освещение;
  • большой функционал;
  • комфорт в применении.

Минусы:

нечасто можно встретить в торговой сети.

Bresser Duolux 20x–1280x

Одной из основной причин распространенности рассматриваемого приспособления станет бюджетная стоимость. Устройство отлично совмещает традиции и новшества. Прибор используется как классическое увеличительное изделие с 1 окуляром. Во время подсоединения цифровой камеры приспособление превратится в серьезную технику для исследования с опцией съемки исследуемых объектов. В приборе присутствует освещение, которое функционирует от электросети либо аккумулятора. В целях транспортирования приспособления разработчик предусматривает комфортную сумку с лямкой.

Устройство уверенно входит в перечень лучших цифровых микроскопов благодаря хорошему увеличению, возможности обучения школьников и студентов. Из недостатков следует выделить низкокачественное изображение во время максимального увеличения.

Плюсы:

  • бюджетная стоимость;
  • широкий функционал;
  • комфортная сумка-кейс.

Минусы:

размытое изображение во время сильного увеличения.

Levenhuk D740T

Подобное устройство является крайне комфортным прибором в целях группового обучения в школе либо институте. Ввиду наличия производительной камеры изображение будет выведено на любой монитор, в это же время возможно объяснить происходящее слушателям. Бинокуляр считается главной насадкой, присутствует тубус в целях установки цифровой камеры.

Диапазон увеличения составит 40-2000 крат, расширить возможности исследования призван конденсор Аббе и эффективное освещение. В целях увеличения контрастности приспособление укомплектовано голубым светофильтром.

Специалисты делают акцент на современной цифровой камере, дающей возможность исследовать микропрепараты. Наряду с приспособлением поставляется кабель и программное обеспечение в целях подключения к ноутбуку либо ПК.

Плюсы:

  • качественная камера;
  • светодиодное освещение;
  • опция подсоединения к персональному компьютеру;
  • конденсор Аббе.

Минусы:

не установлены.

История создания первого микроскопа

О том, что изогнутые поверхности способны зрительно увеличивать предметы, было известно еще до нашей эры. В 1550 году эти необычные свойства нашли свое применение в устройстве, сооруженном голландским мастером по изготовлению очков. Звали его Ханс Янсен, с помощью своего сына он изготовил прибор, позволяющий добиться увеличения объектов в 30 раз. Это стало возможным благодаря использованию двух линз, помещенных в одну трубку. Первая из них увеличивала исследуемый объект, а вторая усиливала действие, делая полученное изображение больше. Однако сконструированный прибор не нашел широкого применения, поэтому история изобретения микроскопа продолжилась в трудах других исследователей:

  • Галилео Галилей – создал прибор, состоящий из двух видов линз. Выпуклые и вогнутые оптические элементы позволяли добиться лучшего изображения и большего увеличения объектов. Произошло это событие в 1609 году;
  • Корнелиус Дреббель – внес в составной микроскоп существенную доработку, применив для увеличения две выпуклые линзы;
  • Кристиан Гюйгенс – разработал регулируемую систему окуляров, что стало огромным прорывом в области изучения микромира.

Все вышеназванные исследователи внесли неоценимый вклад в создание важного оптического прибора. Однако история изобретения и распространения микроскопа начинается с устройств, созданных Левенгуком

Знаменитый голландец не был ученым, его открытия основаны только на любительском интересе. Микроскоп Левенгука имел всего одну, но очень сильную линзу, которая позволяла увеличить изображение в несколько сотен раз. Подобное устройство давало возможность рассмотреть объект исследования подробно и четко. С помощью него Левенгук обнаружил эритроциты в человеческой крови, рассмотрел волокна мышечной ткани, а также впервые увидел бактерии. Данный микроскоп был первым устройством подобного рода, ввезенным в Россию по приказу Петра I. Неоспоримым его преимуществом перед составным микроскопом было отсутствие дефектов изображения, порождаемых несколькими линзами.

Краткая история совершенствования прибора

Первый рабочий прототип создали немецкие инженеры Макс Кнолль и Эрнст Руска, работавшие в Берлине. Он послужил базой, на которой строились все дальнейшие усовершенствования устройства. Правда, по достоинству их заслуги были оценены лишь через пятьдесят с лишним лет: Руска стал лауреатом Нобелевской премии в области физики.

Первый же микроскоп, который стало возможным применять в исследовательской деятельности, собрали в университете Торонто в 1938 году. Примерно в то же время немецкая компания Siemens выпустила первый прибор для использования в коммерческих целях. В 1940-х годах появились и растровые электронные микроскопы. Автором одного из первых таких устройств стал работавший в США русский инженер — Владимир Козьмич Зворыкин. Они считались менее перспективными, и коммерческий сканирующий микроскоп появился только в 1960-х.

Лазерный микроскоп

Лазерный микроскоп представляет собой усовершенствованную версию электронного микроскопа, в основе его работы лежит лазерный пучок, позволяющий взору ученого наблюдать живые ткани на еще большой глубине.

Механические элементы

В любом микроскопе присутствуют элементы, которые позволяют исследователю управлять фокусом, регулировать положение исследуемого образца, настраивать рабочее расстояние оптического прибора. Все это часть механики микроскопа: коаксиальные механизмы фокусировки, препаратоводитель и препаратодержатель, ручки регулировки резкости, предметный столик и многое другое.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector