Бинокулярные и тринокулярные микроскопы (129)

Увеличение: полезное и бесполезное

На вопрос, какой самый лучший микроскоп, многие покупатели могут легко ответить – тот, который увеличивает сильнее всего. Но это заблуждение. Маломощные объективы и окуляры все равно нужны, поскольку без них невозможно увидеть общую картину образца

Необходимо обращать внимание только на показатель полезного увеличения, которое намного ниже номинального (полученного путем перемножения показателей объектива и окуляра)

«Бесполезное» увеличение только приближает картинку, не добавляя деталей. Поэтому в вопросе о том, как выбрать микроскоп, не стоит гнаться за невероятно большими цифрами, которые точно не нужны для любительского использования.

ТОП-1: Bresser (Брессер) Erudit Basic — от 43990 рублей

Лидером в ТОП-8 стала модель оптического микроскопа с готовыми наборами для опытов, который будет для первого знакомства с микромиром идеальным вариантом.


Bresser (Брессер) Erudit Basic

Бинокулярная насадка дает возможность снизить нагрузку на глаза, поскольку наблюдать можно сразу обоими.

Три объектива с разной кратностью расположены в гнездах револьверной головки. Их можно менять, не прекращая исследований. Суммарное увеличение лежит в пределах 40-400 крат.

Стол предметный можно передвигать в двух направлениях. Он оснащен держателями препаратов, которые не позволяют последним сместиться.

Осветитель состоит из светодиодов, а конденсор с диафрагмой служит для регулировки интенсивности света, падающего на рабочую поверхность. Питается подсветка автономно — от батареек, поэтому прибор подходит для исследований вне помещения.

Плюсы

  • Качественная оптика;
  • Фокусировка грубая, а также тонкая;
  • Готовые микропрепараты;
  • Держатель для телефона;
  • Достаточное увеличение;
  • Кейс;
  • Автономное питание.

Что входит в набор

  • Прибор оптический;
  • Окуляры и объективы;
  • Конденсор;
  • Микропрепараты и инструменты;
  • Фиксатор телефона;
  • Документация.

Основные характеристики

  • Тип — оптический прибор;
  • Приближение — от 40 до 400х;
  • Ахроматы — 4,10 и 40х;
  • Поле зрения/увеличение окуляров — 18 мм/1-х;
  • Настройка диоптрий — от -5 до +5;
  • Фокус настраивается тонко и грубо (перемещением столика);
  • Осветитель — светодиодный нижний;
  • Яркость — регулируется;
  • Питание — батарейки типа АА (3 шт.);
  • Диапазон регулировки межзрачкового расстояния — 54-75 мм;
  • Количество мест револьверной головки -3;
  • Габариты — 130х335х200 мм;
  • Масса — 2,95 кг.

Лучший школьный микроскоп с подсветкой

Изделия делятся на простые оптические и сложные цифровые. В школе распространены простые устройства, не требующие предварительной подготовки. Они эффективны, удобны, оборудованы специальными ограничителями, пружинистыми оправами.

Характеристики

  • Угол наклона 45 градусов.
  • Увеличение 400 крат.
  • Количество объективов 3.
  • Увеличение камерой до 2000 раз.
  • Грубая, точная очистка.
  • Предметный столик 90×90.

Плюсы

  • Лапки-держатели предметного столика.
  • Двойная подсветка сверху и снизу.
  • Светодиодная, галогеновая подсветка.
  • Простое применение.
  • Широкопольный окуляр.
  • Оптика высококачественная.
  • Набор для опытов.

Минусы

Небольшое увеличение.

Рейтинг лучших моделей

Levenhuk Rainbow 2L – самый стильный. Яркий, разноцветный прибор, укомплектованный необходимым набором для разведения микроскопических рачков. Увеличение до 400×.

С помощью двойной подсветки изучаются прозрачные и непрозрачные объекты.

Прочный пластиковый корпус делает приспособление легким. Оснащение цифровой камерой 0,3 мпикс сохранит фото и видео процесса исследования.

  • Motic SFC-100FL – самый классический. Предназначение устройства – проведение анатомических, геологических опытов. Увеличение предмета происходит вращением револьверной головки. Диффузор служит снижению яркости освещения.
  • Celestron – самый демократичный. Двойная подсветка для изучения прозрачных, непрозрачных элементов. Наблюдения проводятся в режиме реального времени через окуляр или с экрана компьютера благодаря цифровой камере.

Лупа

Простейшим прибором для визуальных наблюдений является лупа. Лупой называют собирающую линзу с малым фокусным расстоянием (F < 10 см). Лупу располагают близко к глазу, а рассматриваемый предмет – в ее фокальной плоскости. Предмет виден через лупу под углом

где h – размер предмета. При рассматривании этого же предмета невооруженным глазом его следует расположить на расстоянии d = 25 см наилучшего зрения нормального глаза. Предмет будет виден под углом

Отсюда следует, что угловое увеличение лупы равно

Линза с фокусным расстоянием 10 см дает увеличение в 2,5 раза. Работу лупы иллюстрирует рис. 6.1.1.

1

Рисунок 6.1.1.

Действие лупы: а – предмет рассматривается невооруженным глазом с расстояния наилучшего зрения d = 25 см; б – предмет рассматривается через лупу с фокусным расстоянием F.

Применение электронных микроскопов

Патент на первый просвечивающий электронный микроскоп был получен в 1931 г. немецким физиком Р. Рутенбергом. А первый такой прибор создали в 1932 г. Эрнст Август Руска и М. Кнолль. Он давал 400-кратное увеличение, которое было меньшим, чем у оптических микроскопов. Но в его конструкции использовались катушки индуктивности вместо стеклянных линз. Это был прототип современного электронного микроскопа.

В конце 30-х годов фирма Siemensсоздала первую промышленную модель просвечивающего микроскопа, который позволял исследовать внутреннюю структуру вещества.

Первый растровый микроскоп начали производить в середине 60-х годов прошлого века, хотя изобрели его ещё в 1952 г. С его помощью можно получить информацию о рельефе поверхности, составе частиц и даже о химическом составе вещества.

Благодаря высокой разрешающей способности, электронные микроскопы нашли широкое применение в микробиологии, медицине, фармакологии, вирусологии. Они дали возможность получать 3-хмерные изображения микроскопических структур (электронная томография), контролировать качество лекарственных препаратов, изучать воздействие токсинов на организмы. Незаменимы они в промышленности. Их используют для получения двухмерных и трёхмерных микрохарактеристик образцов, в микротехнологиях: травлении, полировке, легировании, литографии и др. 

  • < Назад
  • Вперёд >

Применение[править]

Основная статья: Микроскопия

Оптическая микроскопия является одним их ведущих методов исследований в гистологии, микробиологии, минералогии, металлографии и многих других отраслях науки и техники.

В большинстве случаев используются универсальные или биологические рабочие микроскопы, для более специальные модели (бинокулярный микроскоп, поляризационный микроскоп, металлографический микроскоп и др.).

Специальные методы исследования в микроскопии — метод тёмного поля, метод светлого поля, метод фазового контраста, поляризационная микроскопия — позволяют изучить тонкую структуру объектов.

Недавние достижения

В команде немецкого учёного Штефана Хелля (Stefan Hell) из Института Биофизической Химии научного сообщества Макса Планка (Гёттинген) в сотрудничестве с аргентинским учёным Мариано Босси (Mariano Bossi) в 2006 году был разработан оптический микроскоп под названием Наноскоп, позволяющий преодолевать барьер Аббе и наблюдать объекты размером около 10 нм (а на 2010 год и ещё меньше), оставаясь в диапазоне видимого излучения, получая при этом высококачественные трёхмерные изображения объектов, ранее недоступных для обычной световой и конфокальной микроскопии.

Ведутся работы над получением кристаллов нитрида бора с гексагональной решёткой (hBN) из чистых на 99% изотопов бора. Такой материал линз за счёт поляритонов, образующихся на поверхности кристалла, позволяет многократно понизить дифракционный предел и достичь разрешений порядка десятков и даже единиц нанометров.

Российские учёные из Томского государственного политехнического университета усовершенствовали наноскоп, использовав в нём не микролинзы, как в классической конфигурации, а специальные дифракционные решетки с золотыми пластинками. При получении изображения с такого прибора срабатывают одновременно эффект аномальной амплитудной аподизации, резонанс Фабри — Перо и резонанс Фано. Вместе они и помогают увеличить разрешение, по сравнению с обычной дифракционной решеткой, до 0,3 λ.

Повышение разрешения

CLSM — это метод сканирования изображений, при котором полученное разрешение лучше всего объясняется путем сравнения его с другим методом сканирования, таким как сканирующий электронный микроскоп (SEM). CLSM имеет то преимущество, что не требует подвешивания зонда на несколько нанометров от поверхности, как, например, в AFM или STM , где изображение получается путем сканирования поверхности с помощью тонкого наконечника. Расстояние от линзы объектива до поверхности (так называемое рабочее расстояние ) обычно сравнимо с расстоянием в обычном оптическом микроскопе. Это зависит от оптической конструкции системы, но типичное рабочее расстояние составляет от сотен микрометров до нескольких миллиметров.

В CLSM образец освещается точечным лазерным источником, и каждый элемент объема связан с дискретной интенсивностью рассеяния или флуоресценции. Здесь размер области сканирования определяется размером пятна (близким к дифракционному пределу) оптической системы, поскольку изображение сканирующего лазера представляет собой не бесконечно маленькую точку, а трехмерную дифракционную картину. Размер этой дифракционной картины и определяемый ею фокусный объем контролируются числовой апертурой линзы объектива системы и длиной волны используемого лазера. Это можно рассматривать как классический предел разрешения обычных оптических микроскопов, использующих широкопольное освещение. Однако с помощью конфокальной микроскопии можно даже улучшить предел разрешения методов широкопольного освещения, поскольку конфокальная апертура может быть закрыта для устранения дифракционной картины более высоких порядков. Например, если диаметр точечного отверстия установлен на 1 единицу Эйри, то дифракционная картина первого порядка проходит через апертуру к детектору, в то время как более высокие порядки блокируются, что улучшает разрешение за счет небольшого уменьшения яркости. При флуоресцентных наблюдениях предел разрешения конфокальной микроскопии часто ограничивается отношением сигнал / шум, вызванным небольшим количеством фотонов, обычно доступных в флуоресцентной микроскопии. Компенсировать этот эффект можно, используя более чувствительные фотоприемники или увеличивая интенсивность точечного источника лазерного излучения. Увеличение интенсивности освещения лазером может привести к чрезмерному обесцвечиванию или другому повреждению исследуемого образца, особенно для экспериментов, в которых требуется сравнение яркости флуоресценции. При визуализации тканей с дифференциальной рефракцией, таких как губчатый мезофилл листьев растений или другие ткани, содержащие воздушное пространство, часто проявляются сферические аберрации, ухудшающие качество конфокального изображения. Однако такие аберрации можно значительно уменьшить, помещая образцы в оптически прозрачные, нетоксичные перфторуглероды, такие как перфтордекалин , который легко проникает в ткани и имеет показатель преломления, почти идентичный показателю преломления воды.

Телескоп

Телескопы (зрительные трубы) предназначены для наблюдения удаленных объектов. Они состоят из двух линз – обращенной к предмету собирающей линзы с большим фокусным расстоянием (объектив) и линзы с малым фокусным расстоянием (окуляр), обращенной к наблюдателю. Зрительные трубы бывают двух типов:

  • Зрительная труба Кеплера, предназначенная для астрономических наблюдений. Одна дает увеличенные перевернутые изображения удаленных предметов и поэтому неудобна для земных наблюдений.

  • Зрительная труба Галилея, предназначенная для земных наблюдений, дающая увеличенные прямые изображения. Окуляром в трубе Галилея служит рассеивающая линза.

На рис. 6.1.3 изображен ход лучей в астрономическом телескопе. Предполагается, что глаз наблюдателя аккомодирован на бесконечность, поэтому лучи от каждой точки удаленного предмета выходят из окуляра параллельным пучком. Такой ход лучей называется телескопическим. В астрономической трубе телескопический ход лучей достигается при условии, что расстояние между объективом и окуляром равно сумме их фокусных расстояний F= F1 + F2.

Зрительная труба (телескоп) принято характеризовать угловым увеличением g. В отличие от микроскопа, предметы, наблюдаемые в телескоп, всегда удалены от наблюдателя. Если удаленный предмет виден невооруженным глазом под углом j, а при наблюдении через телескоп под углом y, то угловым увеличением называют отношение

Угловому увеличению g, как и линейному увеличению, можно приписать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Угловое увеличение астрономической трубы Кеплера отрицательно, а земной трубы Галилея положительно.

Угловое увеличение зрительных труб выражается через фокусные расстояния:

3

Рисунок 6.1.3.

Телескопический ход лучей.

В качестве объектива в больших астрономических телескопах применяются не линзы, а сферические зеркала. Такие телескопы называются рефлекторами. Хорошее зеркало проще изготовить, кроме того, зеркала в отличие от линз не обладают хроматической аберрацией.

У нас в стране построен самый большой в мире телескоп с диаметром зеркала 6 м. Следует иметь в виду, что большие астрономические телескопы предназначены не только для того, чтобы увеличивать угловые расстояния между наблюдаемыми космическими объектами, но и для увеличения потока световой энергии от слабосветящихся объектов.

Специальные модификации[править]

Основная статья: Микроскопия

Существуют следующие модификации оптических микроскопов:


Современный оптический микроскоп

Виды оптических микроскопов:

  • Микроскопы универсального назначения (рабочие микроскопы)

    • монокулярные микроскопы, недорогие и простые en:student microscope
    • бинокулярный микроскоп, стереомикроскоп и настольный стереоувеличитель
  • Специальные микроскопы:
    • металл-микроскоп
    • поляризационный микроскоп
    • флуоресцентный микроскоп и люминесцентный микроскоп (ультрафиолетовый микроскоп)
    • ближнепольный оптический микроскоп
    • дифференциальный интерференционно-контрастный микроскоп
    • en:inverted microscope
    • петрографический микроскоп, минералогический микроскоп, имеет помимо поляризатора и анализатора специальную пластинку из гипса или слюды для исследования оптически анизотропных объектов (кристаллы, экструдированные материалы и пр.).
    • фазово-контрастный микроскоп en:phase contrast microscope
    • Бинокулярный микроскоп сравнения

и другие исследовательские микроскопы (en:research microscopethe).

Флуоресцентный микроскоп (Наноскоп)править

Основная статья: Флуоресцентный микроскоп


Флуоресцентный микроскоп

В основе наноскопии лежит впервые сформулированный новый метод российского ученого Андрея Климова, позволяющий увеличить разрешение оптических микроскопов на два порядка. Однако, патент, который оспаривается, принадлежит разработчикам и создателям этого микроскопа Штефану Хеллу (Stefan Hell) из Института биофизической химии (Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute)) — 2006 год.

Метод флюоресцентной микроскопии состоит в том, что покрашенные контрастируемыми флуоресцентными красителями образцы просматриваются с разрешениями в границах 1-10 нанометров — откуда и пошло «наноскопия».

Виды микроскопов

На сегодняшний момент существует множество разновидностей данного прибора. Микроскопы бывают: оптические и электронные, рентгеновские и сканирующие зондовые. Есть также дифференциальный интерференционно-контрастный микроскоп.

Оптические приборы в свою очередь делятся на ближнепольные, конфокальные и двухфотонные лазерные микроскопы. Электронные подразделяются на просвечивающие и растровые устройства. Сканирующие представляют собой совокупность атомно-силовых и туннельных микроскопов, а рентгеновские приборы бывают лазерными, отражательными и проекционными.

Естественной оптической системой является глаз человека. При этом она характеризуется точным разрешением. Нормальное разрешение для обычного глаза составляет примерно 0,2 мм. Это характерно при удалении объекта на расстояние оптимального видения, которое составляет 250 мм. Стоит заметить, что размеры животных и растительных клеток, различных микроорганизмов, деталей структуры металлов и разного рода сплавов, а также мелких кристаллов намного меньше нормального разрешения для человеческого глаза.

Ученые примерно до середины прошлого века использовали в работе только видимое оптическое излучение, диапазоном от четырехсот до семисот нанометров. Иногда применялись приборы с ближним ультрафиолетом. Получается, что оптические микроскопы способны различать вещества с расстоянием между элементами до 0,20 мкм, а это значит, что он может добиться максимального увеличения 2000 крат.

В электронных устройствах для увеличения используется пучок электронов, обладающих волновыми свойствами. При этом электроны достаточно легко можно сфокусировать при помощи электромагнитных линз, потому что они представляют собой заряженные частицы. К тому же электронное изображение не составит труда перевести в видимое.

У электронных устройств разрешающая способность в несколько тысяч раз превышает разрешение светового оптического микроскопа. А в современных приборах она может быть даже менее десяти нанометров.

Сканирующие зондирующие микроскопы – это класс приборов, работа которых основана на сканировании зондом различных поверхностей. Это достаточно новые устройства, изображение на которых получается при помощи фиксирования соприкосновений между поверхностью и зондом. На данный момент в таких устройствах удалось добиться фиксации взаимодействия зонда с некоторыми молекулами и атомами, что выводит сканирующий зондирующий микроскоп на уровень электронных приборов. А в некоторых показателях такие устройства даже превосходят их.

Рентгеновские микроскопы представляют собой прибор, позволяющий исследовать очень малые объекты, величины которых можно сопоставить с длиной рентгеновской волны. Работа такого прибора основана на электромагнитном излучении, имеющим длину волны до одного нанометра. Разрешающая способность рентгеновских устройств намного выше оптических, но ниже электронных микроскопов.

ТОП-8: LEVENHUK D320L за 23879 рублей

Эта модель цифрового микроскопа помогает проводить исследования в медицинских учреждениях. Микроскоп оптический снабжен цифровой 3-мегапиксельной камерой и может передавать картинки на экран компьютера, в нужном формате сохранять их для последующего изучения.


LEVENHUK D320L

Предметный стол прибора перемещается в двух направлениях с помощью винтов для тонкой и грубой фокусировки. Также он оборудован двухлинзовым конденсором Аббе и  широкопольными окулярами. При этом, цена его весьма демократична.

Для исследований, проводимых при низкой освещенности, оптический микроскоп оснащен галогеновой подсветкой, яркость которой можно отрегулировать под конкретный препарат. В револьверной конструкции крепятся 4 ахроматических объектива.

Комплектность

Все что нужно для проведения наблюдений, входит в комплект:

  • высококачественный оптический прибор;
  • USB кабель для  подключения к ПК;
  • редакционная программа, позволяющая в полученных картинках корректировать цвет;
  • 3-мегапиксельная камера цифровая;
  • адаптер – 2 шт.;
  • количество объектов/окуляров – 4/2;
  • конденсор;
  • емкость с иммерсионным маслом;
  • диск с установочной программой и драйверами;
  • талон на гарантийное обслуживание и понятная инструкция.

Основные данные

  • Тип – микроскоп оптический;
  • Камера фирмы Levenhuk C310;
  • Число/кратность окуляров – 2 / (10х и 16х);
  • Количество/увеличение объективов – 4 / (4,10, 40 и 10х);
  • Аббе конденсор с апертурой 1,25 и ирисовой диафрагмой;
  • Осветитель – лампа накаливания (220/110 В, 12 Вт).
  • Приближение – 40-1600 крат;
  • Осветитель – галогеновая лампа, установленная снизу;
  • Яркость – регулируется;
  • Материал корпуса – металл.

Видео

Микроскоп

Микроскоп применяют для получения больших увеличений при наблюдении мелких предметов. Увеличенное изображение предмета в микроскопе получается с помощью оптической системы, состоящей из двух короткофокусных линз – объектива O1 и окуляра O2 (рис. 6.1.2).

Объектив даст действительное перевернутое увеличенное изображение предмета. Это промежуточное изображение рассматривается глазом через окуляр, действие которого аналогично действию лупы.

Окуляр располагают так, чтобы промежуточное изображение находилось в его фокальной плоскости; в этом случае лучи от каждой точки предмета распространяются после окуляра параллельным пучком.

2

Рисунок 6.1.2.

Ход лучей в микроскопе.

Мнимое изображение предмета, рассматриваемое через окуляр, всегда перевернуто. Если же это оказывается неудобным (например, при прочтении мелкого шрифта), можно перевернуть сам предмет перед объективом. Поэтому угловое увеличение микроскопа принято считать положительной величиной.

Как следует из рис. 6.1.2, угол зрения предмета, рассматриваемого через окуляр в приближении малых углов,

Приближенно можно положить d = F1 и f = l, где l – расстояние между объективом и окуляром микроскопа («длина тубуса»). При рассматривании того же предмета невооруженным глазом

В результате формула для углового увеличения микроскопа приобретает вид

Хороший микроскоп может давать увеличение в несколько сотен раз. При больших увеличениях начинают проявляться дифракционные явления.

У реальных микроскопов объектив и окуляр представляют собой сложные оптические системы, в которых устранены различные аберрации.

Параметры выбора. На что обратить внимание при выборе микроскопа?

Современные микроскопы – это высокоточные оптические устройства, функциональность которых всецело зависит от реализованных производителем технических решений и набора дополнительных опций, присутствующих в нем. Разумеется, чем выше функциональность того либо иного микроскопа – тем дороже его итоговая стоимость. Именно по этой причине, подбирая устройство, обладающее максимальным соотношением цены и качества, следует принимать к расчету следующие функции:

  1. Конструкция объектива . От того, насколько продуманной является конструкция, зависит разрешение выводимого изображения и общее его качество. В настоящее время в продаже можно встретить как безыммерсионные объективы, так и их жидкостные аналоги. Последние позволяют получить изображение высокого разрешения, а в качестве рабочей жидкости в них применяется масло либо дистиллят.
  2. Наличие системы оптической коррекции изображения . Любой оптический прибор непременно имеет так называемую хроматическую аберрацию – своеобразный дефект, выражающийся в искажении геометрических прямых изображения. Для того, чтобы свести его к минимуму, производители применяют множество различных решений и в частности устанавливают специальные объективы, имеющие особую форму. Наиболее качественные устройства оборудованы планахроматическими и планапохроматическими объективами, хроматическая аберрация в которых полностью отсутствует. Маркируюстя такие объективы буквами PLAN и PLAN-APO соответственно;
  3. Увеличение объектива . Отображает максимальную кратность приближения и способность рассматривать мельчайшие подробности того либо иного объекта. Кратность практически всегда начинается с 10-15х и может достигать 2000-4000х у профессиональных исследовательских моделей. Поскольку данный параметр оказывает на функциональность микроскопа самое непосредственное влияние, перед покупкой того либо иного устройства необходимо определиться с задачами, которые будут решаться с его помощью.
  4. Разрешающая способность микроскопа . Параметр, напрямую влияющий на качество, резкость и контрастность получаемого изображения. Всецело зависит от апертуры устройства – чем выше данный параметр для конкретного микроскопа – тем выше его разрешающая способность. Если речь идет о сухих линзах, их числовая апертура составляет 1.0. Для «мокрых» моделей данный параметр составляет 1.25 соответственно. Выбирая оптический микроскоп, предпочтение следует отдавать моделям с разрешением не менее 0.2 мкм.
  5. Максимальное полезное приближение микроскопа . Отображает тот предел зумирования, при котором качество картинки все еще сохраняетя на максимальном уровне. Как правило, для оптических микроскопов данный параметр может варьироваться в диапазоне от 1000 до 1250 крат в зависимости от типа установленных на нем линз. Несмотря на то, что такие устройства способны обеспечить и большее приближение, качество картинки при этом сильно страдает, что в ряде случаев делает устройство бесполезным;
  6. Тип и конструкция окуляров . Если говорить об оптических моделях, в продаже можно встретить устройства, оборудованные монокулярном, бинокулярные микроскопы, а также модели комбинированного типа, оборудованные как монокуляром, так и бинокулярами. В случае с электронными и цифровыми устройствами роль окуляров выполняет цифровой дисплей либо монитор компьютера.

Строение микроскопа

Стандартный оптический прибор имеет в своем строении следующие детали:

  • насадку;
  • окуляр;
  • основание и штатив;
  • объективы;
  • револьверную головку;
  • предметный и координатный столики;
  • переключатель и осветитель;
  • винты макрометрической и микрометрической фокусировки;
  • конденсор с диафрагмой.

Оптическая система такого устройства представляет собой объективы, расположенные на револьверной головке, окуляры и в некоторых случаях призменный блок. При помощи оптической системы как раз и формируется изображение изучаемого образца на сетчатке глаза. Причем это изображение будет перевернутым.

В настоящее время многие детские микроскопы содержат в себе линзу Барлоу, применение которой позволяет добиться плавного увеличения изображения до 1000 крат и выше. Однако качество изображения при этом существенно страдает, что делает использование этой линзы в таких устройствах достаточно сомнительным.

В профессиональных устройствах для изменения увеличения используют только различные комбинации качественных объективов и окуляров. И уж конечно, в таких приборах никогда не будет использовать линза столько сомнительного качества.

Механическая система микроскопа представляет собой штатив, тубус, револьверную головку, механизмы фокусировки и предметный столик.

Для фокусировки изображения применяются механизмы фокусировки. Макрометрический винт применяют в работе с небольшими увеличениями, а микрометрический используется при высоких увеличениях. Стандартные школьные или детские микроскопы обычно комплектуются лишь макрометрическим винтом грубой фокусировки. Для лабораторных исследований в обязательном порядке понадобится и механизм тонкой фокусировки. Оптические устройства могут иметь раздельные механизмы грубой и точной фокусировки, а также содержать в себе коаксиальные винты микро и макрометрической регулировки фокуса.

Фокусировка прибора осуществляется при помощи перемещения предметного столика или тубуса устройства в вертикальной плоскости.

Предметный столик необходим для расположения на нем объекта. Можно выделить несколько их разновидностей:

  • стационарный;
  • подвижный;
  • координатный.

Более комфортным для работы считается координатный предметный столик, которые позволяет перемещать образец для исследования в горизонтальной плоскости.

Объективы микроскопа располагаются непосредственно на револьверной головке. Ее вращение позволяет выбрать какой-либо из объективов, тем самым меняя увеличение. Профессиональные устройства оснащены как правило съемными объективами, которые вкручиваются в револьверную головку. Дешевые же варианты микроскопов имеют встроенные объективы.

Тубус микроскопа содержит в себе окуляр. В устройствах с тринокулярной или бинокулярной насадкой существует возможность регулировки расстояния между зрачками, а также коррекции диоптрий, что позволяет подстроить микроскоп под индивидуальные особенности каждого наблюдателя. В детских устройствах в тубусе помимо окуляра может находиться также линза Барлоу.

Осветительная система оптического устройства представляет собой диафрагму, конденсор и источник света.

Источник света может быть как внешний, так и встроенный. Стандартный микроскоп обычно включает в себя нижнюю подсветку. В некоторых детских устройствах иногда используют боковую подсветку, но она не несет за собой никакого практического эффекта.

Лучшие материалы месяца

  • Коронавирусы: SARS-CoV-2 (COVID-19)
  • Антибиотики для профилактики и лечения COVID-19: на сколько эффективны
  • Самые распространенные «офисные» болезни
  • Убивает ли водка коронавирус
  • Как остаться живым на наших дорогах?

Конденсор и диафрагма используется для регулировки освещения микроскопа. Конденсоры могут быть однолинзовыми, двухлинзовыми или трехлинзовыми. При опускании или поднятии конденсора происходит либо рассеивание, либо конденсирование света, который освещает исследуемый образец.

Диафрагма представлена в двух вариантах: ирисовая, с плавным изменением диаметра, и ступенчатая, состоящая из нескольких отверстий разных диаметров. Соответственно увеличивая или уменьшая диаметр светового отверстия можно ограничить или увеличить поток света, льющегося на образец. Некоторые конденсоры оснащаются фильтродержателем, в который могут вставляться различные светофильтры.

Устройство и принцип действия электронного микроскопа

Чтобы увеличить разрешающую способность микроскопа, нужно уменьшить длину волны, освещающей исследуемый объект. Поэтому вместо световых лучей в электронном микроскопе  используются электроны, длина волны которых в тысячи раз меньше длины волны фотонов. Разрешающая способность электронного микроскопа превосходит разрешение оптического микроскопа в 1000 — 10000 раз.

Принцип получения изображения в электронном микроскопе такой же, как и у оптического. Но в  отличие от оптического микроскопа, где световым лучом управляют линзы, находящиеся в объективе и окуляре, в электронном микроскопе это делается с помощью магнитных линз.

Магнитные линзы — это электромагниты, создающие сильные неоднородные электромагнитные поля. Изменяя силу тока, можно управлять магнитными полями и менять траекторию электронов, направляя их поток на исследуемый образец. 

В электронном микроскопе поток электронов падает на образец сверху, а изображение получается внизу.

Корпус электронного микроскопа представляет собой металлическую трубу. В её верхней части расположен источник электронов. Это вольфрамовая нить накала, называемая катодом. На неё подаётся высокое напряжение, и начинается излучение электронов с поверхности катода. Пучок электронов ускоряется с помощью высокой разности потенциалов между катодом и анодом. Для этой цели используется напряжение от 20 кВ до 1 мВ. Далее ускоренный поток фокусируется и направляется  системой магнитных линз на исследуемый образец.  Пройдя через него, он попадает в систему увеличивающих магнитных линз. Вся эта система называется электронной колонной.

Так как наш глаз не может воспринимать электронные пучки, то изображение создается на люминесцентном экране либо фиксируется на фотопластинке или цифровой камере.

Чтобы электроны не рассеивались в результате столкновений с молекулами воздуха, внутри колонны создаётся вакуум.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector