Как выбрать биологический микроскоп

Содержание:

Использование и польза

Проекционный микроскоп получил применение во многих сферах науки. Речь идет как минимум о медицине, минералогии, металловедении. Что же можно сделать при помощи рентгеновского проекционного микроскопа? С легкостью изучить качество тонких покрытий. Благодаря данному устройству, можно увеличить срезы ботанических и биологических объектов с толщиной до 200 мкм. Также можно их использовать для того, чтобы провести анализ порошков металлов, как легких, так и тяжелых, изучая строение объектов. Как правило, таковые вещества являются непрозрачными для световых лучей и электронов. Именно поэтому используются рентгеновские микроскопы

Важное достоинство таких приборов заключается в том, что в них можно наблюдать жизненный цикл непрепарированной живой клетки

Преимущество использования световой микроскопии перед электронной

Электронный микроскоп более востребован в научной работе, так как дает большее увеличение по сравнению со световым

Если требуется установить преимущество использования световой микроскопии перед электронной, то следует обратить внимание на подготовку биологических объектов. В электронный микроскоп нельзя изучать живые бактерии, клетки

В качестве примера рассмотрим тестовое задание: «Выберите преимущество использования световой микроскопии перед электронной». Формулировка теста или вопроса может несколько отличаться. Во всех случаях надо уметь различать возможности световой микроскопии и особенности электронного микроскопа.

Результат выполнения задания «Отметьте преимущество использования световой микроскопии перед электронной»:

Предлагаемые ответы тестового задания «Найдите преимущество использования световой микроскопии перед электронной»:

  1. большее разрешение;
  2. возможность видеть живые объекты;
  3. дороговизна метода;
  4. сложность приготовления препарата.

Правильный ответ — 2) возможность видеть живые объекты.

Ответы 1, 3, 4 неверные, так как являются характеристиками электронной микроскопии. Разрешение электронного микроскопа в тысячи раз превосходит аналогичный показатель светового микроскопа. Используются сложные манипуляции для приготовления препарата. Изучаемый объект сначала фиксируют специальными веществами, затем обезвоживают и заливают пластмассой. Электронный микроскоп — дорогостоящий прибор, его приобретают и устанавливают в крупных исследовательских заведениях.

Электронные микроскопы

Многих интересует вопрос, что за микроскоп это? Определение будет таким же, как и было описано выше. Разница заключается в совершенно другой конструкции. Благодаря таким микроскопам можно рассмотреть изображения атомов. При этом глагол рассмотреть используется в переносном смысле, так как изображение получается не при помощи объектива. Человеку не нужно смотреть в линзу, все данные переносятся на компьютер. Программное обеспечение само обрабатывает полученную информацию. Конструкция электронного микроскопа имеет другие физические принципы. Для исследования поверхность объектов пронзается тончайшей иглой. Ее кончик имеет размер всего лишь в один атом.

Лучший лазерный микроскоп

Рейтинг:

3D микроскоп NS -3000 – высокоскоростной. Прибор предназначен для точного измерения объектов, построения изображений в пространстве.

Быстродействующий сканирующий модуль и программные алгоритмы формируют картинку в режиме реального времени.

С помощью механизма проверяются, измеряются миниатюрные 3D-структуры (полупроводниковые пластины, плоские панели для дисплеев, стеклянные подложки).

Управление микроскопом с регулировкой параметров под силу даже новичку, главная панель управления и изображение находятся в одном окне программы.

K 1-Fluo – самый производительный.

Микроскоп применяется в области биологии и медицины, отличается превосходным качеством изображения из-за оптических компонентов, высокочувствительного детектора, стабильного многоволнового диодного лазера.

Оптика и механизм объединяются с любым другим типом микроскопа. Интерфейс располагает простым и понятным управлением.

Программное обеспечение включает режимы сканирования, трехмерное изображение, мульти-канальное детектирование, изображение сечения, временные серии.

Nanofinder S – 3D – самый универсальный.

Предназначение прибора – исследования в нанолабороториях при анализах полупроводников, жидких кристаллов, оптических световодов, полимеров, фармацевтических, биологических веществ, одиночных молекул.

Преимуществом работы является выбор лазеров, автоматизированная структура.

Приборы увеличивают изображения исследуемых объектов за счет образцов дифракции, которые образуются в результате взрыва частиц фотонами лазерного луча.

Живые ткани рассматриваются вглубь на 1 мм посредством флюоресценции (физического процесса, разновидности люминесценции). Собирается лазер системой обычных и полупрозрачных зеркал.

Применяются устройства в лабораториях, для домашнего использования не подходят из-за сложности принципа работы.

Характеристики:

  • Увеличение до 100x.
  • Диапазон измерений высоты – 70 мм.
  • Высокочувствительный сенсор.
  • Количество детекторов до 4.
  • Разрешение сканирования 2048×2048.
  • Электронное управление.

Плюсы:

  • Наглядное, яркое изображение.
  • Оптическое высокое разрешение.
  • Построение конфокального изображения в реальном времени.
  • Автофокусировка, подбор увеличения.
  • Простой режим анализа.
  • Ткань, исследуемая лазерными фотонами, практически не разрушается.
  • Обеспечивается высокое пространственное разрешение.

Минусы:

  • Требуются дорогие оптические ресурсы.
  • Луч поглощается водой тканей.

Устройство

Сейчас в современной оптике имеются отличные линзы, которые имеют эффект обратного лучепреломления.

Человеческий глаз не может уловить рентгеновский луч. Именно поэтому приходится использовать фототехнику или преобразователь, которые помогут увидеть их. Первый рентгеновский микроскоп, который использовался в коммерческих целях, был создан в пятидесятых годах XX века. На тот момент он являлся проекционным микроскопом, в котором были использованы фотопластинки.

На данный момент имеется два типа рентгеновских микроскопов. Они называются «отражательный» и «проекционный». В первом используется явление, которое действует при скользящем падении. Это позволяет максимально улучшить и увеличить проникающую способность лучей. Для того чтобы работать с такими приборами, необходимо поместить источник излучения за изучаемым объектам. Тогда рентгеновские лучи будут просвечиваться. За счет этого такой метод позволяет давать не только информацию о структуре, но и о химическом составе объекта.

Проекционные же представляют собой камеры, расположенные на противоположных концах. С одной стороны находится источник излучения, а с другой человек смотрит.

С микроскопами такого типа довольно часто используются дополнительные оптические приборы. Для того, чтобы получить максимальное увеличение необходимо размещать объект на минимальном расстоянии от излучения. Для этого необходимо фокус расположить на окне рентгеновской трубки. Последнее время ведутся разработки микроскопов, которые будут использовать специальные пластинки френеля, чтобы максимально сфокусировать изображение. Такие микроскопы получили разрешающую способность до 30 нанометров.

Типы подсветки

Дни, когда единственным вариантом сбора света для микроскопа было зеркало, ушли в прошлое. Современные приборы оснащены электрической подсветкой, а значит, возможность работы с микроскопом не зависит более от условий освещения. Остановимся на самых распространенных типах подсветки.

Лампа накаливания

Освещение лампой накаливания – наиболее дешевый в производстве тип подсветки. Вольфрамовые лампы характеризуются стабильным свечением, но для микроскопии это не лучший вариант. Основные недостатки ламп накаливания перечислены ниже.

Теплый спектр излучаемого света: такое освещение заметно искажает цветопередачу оптики

Для образовательной сферы это не так уж важно, однако серьезные задачи с такой подсветкой не решаются.
Очень большое тепловое излучение: оно может убить исследуемых живых существ или иссушить препараты на слайдах.
Типы ламп не стандартизованы: бывает сложно найти подходящую для данной модели микроскопа.
Невозможно регулировать интенсивность свечения.

Светодиодная подсветка

LED (Light-Emitting Diode) – новейшая технология, применение которой дает множество преимуществ.

  1. Светодиоды потребляют крайне мало энергии: это позволяет выпускать даже переносные микроскопы, работающие от аккумуляторной батареи.
  2. LED-лампы излучают свет холодного спектра, наиболее предпочтительный для исследования прозрачных образцов.
  3. Осветители на светодиодах могут быть оборудованы диммером для плавного регулирования яркости.

Изначально LED-подсветкой оснащали в основном микроскопы студенческого уровня. Но последующие достижения в области LED- технологий сделали эти лампы ярче, надежней и долговечней, поэтому они быстро завоевали популярность в профессиональной сфере.

Галогеновая лампа

Галогеновую подсветку применяют на медицинских и исследовательских приборах. Лампы такого типа дают мощный поток света и всегда комплектуются регулятором яркости. На монокулярные микроскопы галогеновую подсветку почти не устанавливают из-за чрезмерной для такой оптической системы яркости, зато для бинокулярных моделей мощность светового излучения как раз оптимальна.

В микроскопии используются и другие виды подсветки – например, флюоресцентные кольцевые осветители. Но служат они весьма частным целям, и в общем обзоре останавливаться на их описании не имеет смысла.

История создания микроскопа

Создание микроскопа имеет многовековую историю. Прибор прошел путь от простой трубки, в которую едва что-то можно было рассмотреть, до электронного устройства огромной мощности с большими увеличительными возможностями.

Один из первых микроскопов

Поскольку ранее наукой интересовались богатые люди, заказанные ими единичные экземпляры микроскопов украшались дорогими камнями и золотом, футляры для их хранения изготавливались из слоновой кости и ценного дерева.

В настоящее время существует множество микроскопов, они находят применение в разных сферах деятельности человека: медицине, промышленности, археологии, электронике и др.

Микроскоп Захария Янссена (XVI век)

Первый микроскоп создал нидерландский мастер по изготовлению очков Захарий Янссен. Это была обычная трубка с двумя линзами на концах. Настройку изображения выполняли, выдвигая трубку (тубус). Этот простой микроскоп стал основой для создания более сложных приборов.

Микроскоп Гука (середина XVII века)

Роберт Гук собрал очень удобную модель микроскопа: тубус можно было наклонять. Чтобы получить хорошее освещение, ученый придумал специальную масляную лампу и стеклянный шар, который наполнялся водой.

Микроскоп Галилея (начало XVII века)

Галилео Галилей доработал трубу Янссена, заменив одну из выпуклых линз на вогнутую. При выдвижении тубуса этот микроскоп служил еще и телескопом. Предположительно микроскоп Галилея изготовил мастер Джузеппе Кампаньи из дерева, картона и кожи и поставил на трехногую подставку из металла.

Микроскоп Левенгука (середина XVII века)

Изобретение Левенгука представляло собой две небольшие пластины, между которыми крепилась крошечная линза, а исследуемый объект помещался на иглу. Передвигать иглу можно было с помощью специального винта. Микроскоп мог увеличить изображение в 300 раз, что было немыслимо для той поры.

Микроскоп Иоганна ван Мушенбрука (конец XVII века)

Иоганн ван Мушенбрук создал необычный и простой в использовании микроскоп. Линза и держатель крепились с помощью подвижных соединений, названных «орехами Мушенбрука». Это придавало микроскопу большую гибкость.

Микроскоп Дреббеля (XVII век)

Микроскоп Дреббеля — это позолоченная труба, которая находилась в строго вертикальном положении. Работать за таким микроскопом было не очень удобно.

Микроскоп фирмы Шевалье (XIX век)

Наука шагнула далеко вперед. Фирма Шевалье стала производить микроскопы, объектив которых состоял уже не из одной простой, а из многих специально отшлифованных ахроматических линз. Это позволяло достигать большой мощности и передавать изображение без искажений и более четко.

Электронный микроскоп (XX век)

Появляются электронные микроскопы. Ученые заменили пучок света на поток микрочастиц — электронов. Для получения изображения в электронном микроскопе используются специальные магнитные линзы, они управляют движением электронов с помощью магнитного поля.

USB-микроскоп (конец XX века)

USB-микроскоп — это небольшой цифровой прибор, который присоединяется к компьютеру через USB-порт. Вместо окуляра — маленькая веб-камера, которая посылает изображение прямо на монитор компьютера.

Общие сведения для работы с микроскопом

Эксплуатируя данный прибор необходимо знать правила работы с микроскопом:

Работу необходимо выполнять сидя.
Следует осмотреть прибор и протереть от пыли мягкими салфетками зеркальце, объектив и окуляр.
При работе с микроскопом нежелательно его передвигать, поставить слева от себя.
Произвести открытие диафрагмы, привести конденсор к верхнему положению.
Работу стоит начинать с малого увеличения.
Объектив довести до одного сантиметра от стекла с наблюдаемым объектом.
Равномерно распределить освещение поля зрения, используя окуляр, в который необходимо смотреть глазом, и вогнутое зеркало.

Переместить микропрепарат на столик микроскопа. Наблюдая сбоку, опустить объектив до уровня 4-5 мм над исследуемым объектом, используя для этого макровинт.
Глядя глазом в окуляр, производить вращательные движения грубого винта, для подведения объектива к положению, в котором будет четко видно изображение.
Перемещая стекло с препаратом, найдите место, где исследуемый объект будет располагаться по центру вашего поля зрения в микроскопе.
В случае отсутствия изображения, повторите с шестого по девятый пункты.
Используя микрометренный винт, добейтесь необходимой четкости изображения

Обратит внимание на то, не выходит ли точка между рисками на микрометренном механизме, за пределы рисок. Если выходит, то верните ее в стандартное положение.
Заключаем правила работы с микроскопом, уборкой рабочего места

Необходимо вернуть увеличение с большого на малое, произвести поднятие объектива, снять препарат и протереть микроскоп, далее накрыть полиэтиленом и вернуть в шкафчик.

Данные правила в большей мере относятся к оптическим микроскопам. Строение микроскопа, например, электронного или рентгеновского, отличается от светового, а потому основные правила работы могут также отличаться. Особенности работы с такими устройствами можно найти в инструкции к ним.

Биология

§ 6. Устройство увеличительных приборов

  1. Какие увеличительные приборы вы знаете?
  2. Для чего их применяют?

Если разломить розовый, недозревший, плод томата (помидор), арбуза или яблока с рыхлой мякотью, то мы увидим, что мякоть плодов состоит из мельчайших крупинок. Это клетки. Они будут лучше видны, если рассмотреть их с помощью увеличительных приборов — лупы или микроскопа.

Устройство лупы. Лупа — самый простой увеличительный прибор. Главная его часть — увеличительное стекло, выпуклое с двух сторон и вставленное в оправу. Лупы бывают ручные и штативные (рис. 16).

Рис. 16. Лупа ручная (1) и штативная (2)

Ручная лупа увеличивает предметы в 2—20 раз. При работе её берут за рукоятку и приближают к предмету на такое расстояние, при котором изображение предмета наиболее чётко.

Штативная лупа увеличивает предметы в 10—25 раз. В её оправу вставлены два увеличительных стекла, укреплённых на подставке — штативе. К штативу прикреплён предметный столик с отверстием и зеркалом.

Устройство лупы и рассматривание с её помощью клеточного строения растений

  1. Рассмотрите ручную лупу. Какие части она имеет? Каково их назначение?
  2. Рассмотрите невооружённым глазом мякоть полуспелого плода томата, арбуза, яблока. Что характерно для их строения?
  3. Рассмотрите кусочки мякоти плодов под лупой. Зарисуйте увиденное в тетрадь, рисунки подпишите. Какую форму имеют клетки мякоти плодов?

Устройство светового микроскопа. С помощью лупы можно рассмотреть форму клеток. Для изучения их строения пользуются микроскопом (от греческих слов «микрос» — малый и «скопео» — смотрю).

Световой микроскоп (рис. 17), с которым вы работаете в школе, может увеличивать изображение предметов до 3600 раз. В зрительную трубку, или тубус, этого микроскопа вставлены увеличительные стёкла (линзы). В верхнем конце тубуса находится окуляр (от латинского слова «окулус» — глаз), через который рассматривают различные объекты. Он состоит из оправы и двух увеличительных стёкол.

На нижнем конце тубуса помещается объектив (от латинского слова «объектум» — предмет), состоящий из оправы и нескольких увеличительных стёкол.

Тубус прикреплён к штативу. К штативу прикреплён также предметный столик, в центре которого имеется отверстие и под ним зеркало. Пользуясь световым микроскопом, можно видеть изображение объекта, освещенного с помощью этого зеркала.

Рис. 17. Световой микроскоп

Чтобы узнать, насколько увеличивается изображение при использовании микроскопа, надо умножить число, указанное на окуляре, на число, указанное на используемом объекте. Например, если окуляр даёт 10-кратное увеличение, а объектив — 20-кратное, то общее увеличение 10 х 20 = 200 раз.

Порядок работы с микроскопом

  1. Поставьте микроскоп штативом к себе на расстоянии 5—10 см от края стола. В отверстие предметного столика направьте зеркалом свет.
  2. Поместите приготовленный препарат на предметный столик и закрепите предметное стекло зажимами.
  3. Пользуясь винтом, плавно опустите тубус так, чтобы нижний край объектива оказался на расстоянии 1—2 мм от препарата.
  4. В окуляр смотрите одним глазом, не закрывая и не зажмуривая другой. Глядя в окуляр, при помощи винтов медленно поднимайте тубус, пока не появится чёткое изображение предмета.
  5. После работы микроскоп уберите в футляр.

Микроскоп — хрупкий и дорогой прибор: работать с ним надо аккуратно, строго следуя правилам.

Устройство микроскопа и приёмы работы с ним

  1. Изучите микроскоп. Найдите тубус, окуляр, объектив, штатив с предметным столиком, зеркало, винты. Выясните, какое значение имеет каждая часть. Определите, во сколько раз микроскоп увеличивает изображение объекта.
  2. Познакомьтесь с правилами пользования микроскопом.
  3. Отработайте последовательность действий при работе с микроскопом.

Вопросы

  1. Какие увеличительные приборы вы знаете?
  2. Что представляет собой лупа и какое увеличение она даёт?
  3. Как устроен микроскоп?
  4. Как узнать, какое увеличение даёт микроскоп?

Задания

Выучите правила работы с микроскопом.

Используя дополнительные источники информации, выясните, какие подробности строения живых организмов позволяют рассмотреть самые современные микроскопы.

Знаете ли вы, что…

Световые микроскопы с двумя линзами были изобретены в XVI в. В XVII в. голландец Антони ван Левенгук сконструировал более совершенный микроскоп, дающий увеличение до 270 раз, а в XX в. был изобретён электронный микроскоп, увеличивающий изображение в десятки и сотни тысяч раз.

Развитие

Чуть позже появилось такое понятие, как микроскопы. Принцип работы на тот момент был основан на использовании двух линз. Первая являлась объективом, который необходимо было направить на изучаемый объект. Вторая же была окуляром. В нее смотрел наблюдатель. Из-за хроматических отклонений, а также сферических, получаемое изображение было сильно испорчено. Более того картинка была неточной, нечеткой, а также окрашенной в неправильные цвета. Но даже в то время кратность устройства достигала несколько сот, что являлось неслабым показателем.

Значение слова «микроскоп» обрело смысл с разработкой системы линз, которая была осложнена только в начале XIX века. На тот момент в устройстве объектива уже устанавливалась сложнейшая система, в которую были добавлены собирательные и рассеивающие линзы. Они были созданы из специального стекла, которое компенсировало недостатки друг друга.

Чуть позже был создан микроскоп, который получил предметный столик. Туда можно было складывать все объекты, которые следует изучить. В конструкцию также был добавлен винт, который позволял столик перемещать. И уже немного позже появилось зеркало, которое позволяло идеально освещать объекты. Лабораторные микроскопы на данный момент имеют похожее строение. Они идеально показывают себя в эксплуатации и являются незаменимыми помощниками.

Сравнительная таблица представленных моделей

В целях сравнения представленных товаров, предлагаем взглянуть на таблицу с их характеристиками ниже.

Модель Страна производитель Увеличение (крат) Тип Питание Цена (руб)
Bresser National Geographic 40–640x Германия 40-640 монокулярный 2 батарейки АА от 4175 до 5300
Celestron Microscope Kit 44121 США 40-600 монокулярный 2 батарейки ААА от 3849 до 5000
Espada 1000X Китай 0-1000 цифровой USB – порт от 1594 до 2890
Levenhuk Rainbow 2 Китай 40-400 цифровой 3 батарейки АА от 6790 до 7500
Levenhuk 2S NG Китай 0-200 монокулярный 2 батарейки АА от 3420 до 4900
Биомед 1 (объектив S 100/1,25 OIL 160/0,17) Россия 40-1600 оптический источник света – зеркало от 7450 до 9000
Микромед С-13 Россия 40-800 оптический источник света – зеркало от 4299 до 5600

Электронная микроскопия

Появление электронного микроскопа позволило использовать электроны, обладающие свойствами и частиц, и волн в микроскопии.

Электрон обладает длинной волны, которая зависит от его энергетического потенциала: E = Ve, где V – величина разности потенциалов, e – электронный заряд. Длина волны электрона при пролете разности в потенциалах равной 200000 В составит около 0,1 нм. Электрон легко фокусируется при помощи электромагнитных линз, что обуславливается его зарядом. После электронную версию изображения переводят в видимую.

Среди таких увеличительных устройств набрал широкую известность цифровой микроскоп. Он позволяет подключать адаптеры к аппарату с целью переноса изображения на компьютер и его сохранения. При работе с подобными устройствами камера регистрирует наблюдаемое изображение, далее переносит его на ПК при помощи USB-кабеля.

Цифровой микроскоп может классифицироваться в соответствии с его режимом работы, увеличительной кратности, числу подсветок и разрешению камеры. Их главными достоинствами считаются наличие возможности переносить изображение на ПК и сохранять его, возможность в пересылке полученной информации на большие расстояния, редактирование, детальный анализ и хранение результатов исследования, а также умение проецировать картинку при помощи проекторов.

Электронные микроскопы обладают разрешающей способностью превосходящей световые в 1000-10000 раз.

Применение

Человеческий глаз представляет собой биологическую оптическую систему, характеризующуюся определённым разрешением, то есть наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличены один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешение составляет 0,176 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. Для наблюдения и изучения подобных объектов и предназначены микроскопы различных типов. С помощью микроскопов определяли форму, размеры, строение и многие другие характеристики микрообъектов. Оптический микроскоп в видимом свете давал возможность различать структуры с расстоянием между элементами до 0,20 мкм. Так было до создания оптического микроскопа наноскопа.

Развитие видеотехники оказало существенное влияние на оптические микроскопы. Помимо упрощения документирования наблюдений электроника позволяет автоматизировать рутинные операции. А при отказе от непосредственного наблюдения глазом отпадает необходимость в классическом окуляре. В простейшем случае при модернизации микроскопа вместо окуляра устанавливается специальная оптическая конструкция для проецирования изображения на матричный фотоприёмник. Изображение фотоприёмника передаётся в ЭВМ и/или на дисплей. Существуют также комбинированные профессиональные микроскопы оснащённые третьим оптическим портом для установки фотоаппаратуры. В некоторых современных устройствах возможность прямого наблюдения глазом может отсутствовать полностью, что позволяет создавать простые и удобные в работе приборы компактного дизайна. Использование многоэлементных фотоприемников позволяет вести наблюдения не только в видимом, но и примыкающем к нему участках спектра.

Устройство оптического микроскопа: A — окуляр; B — объектив; C — объект; D — конденсор; E — предметный столик; F — зеркало.

Как выбрать микроскоп

Чтобы выбрать надлежащее устройство, необходимо сделать акцент на следующих критериях:

  • Назначение. Нужно определиться с задачами, которые ставятся перед прибором. Либо это приспособление, которое предназначено для развития подростка, либо это микроскоп, предназначаемый для серьезных профессиональных задач.
  • Окуляр и объектив. Важными элементами в любом подобном изделии станут окуляр и объектив. Когда окуляр является системой линз, которые установлены вверху тубуса, то объектив – те же линзы, находящиеся перед исследуемым предметом. Окуляры зачастую меняют на видеоокуляры либо камеры, что даст возможность провести диагностику с передачей на крупный монитор. В современных изделиях присутствует несколько объективов с различным увеличением, перестановка будет происходить быстро ввиду револьверного механизма.
  • Подсветка. В целях тщательного анализа небольших предметов понадобится надлежащая подсветка. Дневное освещение не во всех случаях позволяет получить качественное изображение. Потому разработчики устанавливают верхнее либо комбинированное освещение. От его мощности часто зависит производительность.
  • Увеличение. Определяют произведением зума окуляра и объектива. Когда в окуляре 10-кратное увеличение, а в объективе – 40 крат, то увеличение в микроскопе равняется 400х. В целях учебы достаточно величины 800х, для клинической диагностики – 1600х.
  • Камера. В цифровых микроскопах также присутствует камера. Для получения четкой видео- либо фотокартинки, требуется сделать акцент на разрешении камеры. Оптимально работают приспособления с высококачественным HD-разрешением.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector