Микроскоп

Микроскопы компании Nikon

Микроскопы торговой марки Nikon занимают высшую ступеньку. Это современные микроскопы, в которых конструкторы интегрировали самые новые и современные инновационные технические решения и возможности мировой науки и техники.

По сфере применения микроскопы компании Nikon подразделяются на следующие группы:

  • биологический микроскоп;
  • стереомикроскопы.

Биомедицинские или биологические микроскопы Nikon используются для современных биологических и медицинских исследований по изучению живых организмов и объектов, а также для автоматизированных и многоцелевых лабораторных анализов.

Среди биомедицинских Nikon выделяются следующие модельные ряды:

  • Микроскоп Nikon Eclipse Е;
  • Микроскоп Nikon Eclipse Ci;
  • Микроскоп Nikon Ni;
  • Микроскоп Nikon Ti.

Стереомикроскопы Nikon позволяют оператору наблюдать трёхмерный объект исследования с возможностью получения вполне естественного изображения.

Среди стереомикроскопов Никон выделяются следующие серии моделей:

  • Микроскоп Nikon SMZ1270/1270i;
  • Микроскоп Nikon SMZ800N;
  • Микроскоп Nikon SMZ25/SMZ18;
  • Микроскоп Nikon SMZ745/745T;
  • Nikon SMZ660;
  • Nikon SMZ445/460.

Документация(фиксирование) изображения.

Интеграция современных микроскопов Nikon с цифровыми камерами позволяет вести непрерывное наблюдение за рассматриваемыми объектами с одновременной фиксацией и записью их изображений. Цифровые камеры, в настоящее время широко применяются для наблюдений за живыми организмами, а также в других отраслях науки и техники.

Компания Nikon выпускает следующие цифровые камеры:

Nikon DS-Fi2 Nikon DS-Qi1 Nikon DS-Vi1 Nikon DS-Fi1c Nikon DS-Ri1

  • цифровую камеру Nikon DS-Fi2;
  • цифровую камеру Nikon DS-Qi1;
  • цифровую камеру Nikon DS-Vi1;
  • цифровую камеру Nikon DS-Fi1c;
  • цифровую камеру NikonDS—Ri1.

Функция и строение инструмента

Микроскоп является важным инструментом в мире биологических наук. Это инструмент для научного образования и научных исследований. Без него человек никогда не сможет понять мир микроорганизмов.
Функция состоит в том, чтобы видеть вещи на разных уровнях или увеличениях (например, клетки, которые нельзя увидеть невооруженным глазом).

Чтобы лучше понять функцию и основную структуру рассмотрим строение устройства:

Окуляр

Именно через окуляр мы смотрим на образец, помещенный на подмостки микроскопа. Он содержит две или более линз. Наиболее распространенное увеличение для окуляра 10-х однако они также могут быть 2-x и 5-x. Глазная часть съемная и может быть заменена другой частью с другим увеличением.

Держатель окуляра

Просто соединяет окуляр с корпусом обычно с помощью установочного винта, чтобы пользователь мог легко менять окуляр для изменения увеличительной мощности.

Линза объектива

Основные линзы составного микроскопа и могут иметь увеличение 4-x, 5-x, 10-x, 20-x, 40-x, 50-x и 100-x. Значения увеличения обычно гравируются на стороне каждой линзы. Составная часть к которой крепятся эти линзы может поворачиваться вручную, чтобы получить объектив нужного увеличения для фокусировки на объекте.

Опора и наконечник

Опора соединяет линзовый аппарат с основанием. Наконечник соединяет объектив с корпусом. С помощью  вращающейся носовой части можно прикрепить до пяти различных степеней увеличения при повороте в нужное положение и использовании с существующим окуляром.

Подключение специальной цифровой микрокамеры

Если вам нужно не только получить картинку, но и произвести какие-либо измерения, сохранить изображение на компьютере, то без цифровой микрокамеры не обойтись. Она может поставляться как с оптическим блоком, так и без него. Точное название оптического блока – гома́л, или гома́ль.

Гомал – отрицательный оптический элемент, который используется вместо окуляра для микрофотографии. Бывают гомалы с различным фокусным расстоянием, с фиксированным или переменным увеличением и т.д.; самые распространенные дают увеличение порядка 10 крат. При съемке гомал необходим для устранения дефектов изображения, но при визуальных наблюдениях им не пользуются.

Итак, в тушку камеры (С-Mount резьба) вы вкручиваете комплектный гомал с ответной частью резьбы и вставляете «носик» камеры либо вместо окуляра, либо в фотоканал. Переходники под разные диаметры у большинства камер есть в комплекте. У классического биологического микроскопа внутренний диаметр окулярной трубки составляет 23.2 мм, у стереомикроскопа – 30 мм или 30.5 мм.

Если вы приобрели камеру без оптического блока, то вам, скорее всего, не повезло: очень немногие микроскопы (обычно премиум-сегмента) имеют ответную часть для C-Mount резьбы на комплектном фотоадаптере. Существуют два способа решения этой проблемы.

  1. Докупить гомал, соединить его с камерой и установить на нужное место.
  2. Найти переходник, у которого с одной стороны будет C-Mount резьба, с другой – трубка ø 23 мм.

С первым вариантом проблем возникнуть не должно, а вот второй бывает сложен в реализации.

Вероятно, у вас уже возник вопрос: какое увеличение я получу, если оптического блока нет? Выходит, кратность равна увеличению объектива микроcкопа и только? Не все так просто: в данной ситуации использовать понятие увеличение не совсем корректно, лучше говорить о масштабе изображения. Он равен отношению линейного размера изображения к линейному размеру предмета, и изменять его можно как в большую, так и в меньшую сторону при помощи экстендеров – удлинительных колец, которые накручиваются на Т-адаптер.

Надеюсь, из вышесказанного вы сделали вывод о том, что покупать камеру без оптического блока – не самая лучшая идея.

Подключение зеркального фотоаппарата

Если у вас есть зеркальный фотоаппарат, вы можете подключить его к микроскопу! Понадобятся две вещи: Т-кольцо (к примеру, такое) и Т-адаптер.

Т-кольцо нужно выбирать с учетом марки фотоаппарата, так как узел крепления объектива к тушке камеры (байонет) у разных производителей имеет различную конфигурацию. Одной своей стороной кольцо крепится к байонету тушки фотоаппарата, а с другой имеется метрическая резьба М42 с шагом 0.75 мм. Здесь нужно быть внимательным и не ошибиться, так как встречаются переходники с шагом резьбы в 1 мм. Обязательно уточняйте этот момент у продавца!

Т-адаптер с одной стороны имеет ответную часть под резьбу М42, а с другой – просто трубку с диаметром 23.2 мм.

Итак, нужно взять фотоаппарат, снять с него объектив и установить на байонет Т-кольцо. Затем вкрутить в кольцо Т-адаптер и установить его вместо окуляра или в отдельный оптический порт (для тринокулярного микроскопа). При таком способе установки понятие увеличение снова заменяется масштабом изображения.

Классификация по принципу построения изображения

В лабораторных микроскопах наблюдатель видит отраженный или проходящий через свет не всегда так, как если бы он смотрел невооруженным глазом. Луч света может быть подвергнут изменению, как по форме, так и по длине волны или другим свойствам. В связи с этим, выделяют несколько видов лабораторных микроскопов по принципу построения изображения:

  • Метод светлого поля. Для обычного человека это наиболее удобная форма восприятия объекта: светлый фон и темное изображение. Используется в микроскопах проходящего света, поэтому наблюдатель получает то же самое изображение, но в увеличенном виде. Изменения могут вызываться только применением  светофильтров из цветного стекла, которые надеваются на объектив. Реже используются интерференционные светофильтры, которые пропускают только определенную длину волны.
  • Метод темного поля. В этих микроскопах все наоборот: темный фон и более светлое изображение либо яркий блестящий контур исследуемого объекта. Достигается это разными способами в зависимости от типа микроскопа. В проходящих падающий свет перекрывается до того момента, как он попадет на объект. В приборах отраженного света луч проходит через кольцевую диафрагму с непрозрачным диском, который по своему размеру превышает выходной зрачок объектива.
  • Метод фазового контраста. Эти микроскопы, которые иногда так и называют – фазовые, — позволяют получить изображения с четко выраженными внешними и внутренними границами. Этот метод хорошо подходит для изучения клеток и тканей.
  • Люминесцентные микроскопы. Их принцип действия строится на свойствах некоторых веществ возбуждать собственное излучение под действием ультрафиолетовых или сине-фиолетовых лучей. Соответствующий яркий источник света направляется на объект, а новые лучи от него «отсекаются» сложной системой светофильтров до получения излучения только определенной длины волны.
  • «Иммерсионные» микроскопы. Эти приборы используются для сложных медико-биологических исследований, где нужно получить контрастное изображение объекта на фоне схожего оттенка. Прямой проходящий свет перекрывается в два этапа: часть до объекта, вторая часть – после объекта с ослаблением.
  • Микроскопы интерференционного (или дифференциально-интерференционного) контраста. Позволяют получить на однотонном фоне объемное изображение того же цвета. Для разделения изображения и фона используется окантовка другого цвета.
  • Ультрафиолетовые и инфракрасные микроскопы. В них освещение и формирование изображения происходит на длинах волн, невидимых для человеческого глаза. Соответственно, для удобства наблюдений такие микроскопы подключаются к компьютеру, который конвертирует изображение.

Современные лабораторные микроскопы далеко не всегда строятся по какому-либо одному принципу. Для лаборатории экономически невыгодно приобретать десятки моделей приборов для разных наблюдений, поэтому сейчас микроскопы выпускаются в модульном исполнении для формирования разных способов построения изображений. Кроме того, многие можно подключать к компьютеру для записи и обработки информации.

Камера-обскура

Заканчивая разговор об оптических инструментах, необходимо упомянуть камеру-обскуру, изобретенную в 1420 г. итальянским инженером Дж. Фонтаной. Камера-обскура является простейшим оптическим приспособлением, позволяющим получать на экране изображения предметов. Это темный ящик с небольшим отверстием в одной из стенок, перед которым помещают рассматриваемый объект. Исходящие от него лучи света проходят через отверстие и создают на противоположной стене ящика (экране) перевернутое изображение объекта.

В 1558 г. итальянец Дж. Порта приспособил камеру-обскуру для исполнения рисунков. Ему же принадлежит идея применения камеры-обскуры для проецирования рисунков, помещенных у отверстия камеры и сильно освещаемых свечами или солнцем.

Микроскопы
представляют собой оптические приборы, используемые для многократного увеличения рассматриваемых объектов. С помощью этих приборов определяются размеры, форма и строение мельчайших частиц, которые невозможно увидеть невооруженным глазом.

Микроскопы – незаменимое оптическое оборудование для таких сфер деятельности, как медицина, биология, ботаника, электроника и геология, так как на результатах исследований основываются научные открытия, ставится правильный диагноз и разрабатываются новые препараты.

Создатель телескопа Галилей в 1610 году обнаружил, что в сильно раздвинутом состоянии его зрительная труба позволяет сильно увеличить мелкие предметы.

Рисунок 118. Первые микроскопы:Янсена,А. Левенгука, Роберта Гука

Его можно считать изобретателем микроскопа, состоящего из положительной и отрицательной линз. Более совершенным инструментом для наблюдения микроскопических предметов является простой микроскоп. Когда появились эти приборы, в точности неизвестно. В самом начале XVII века несколько таких микроскопов изготовил очковый мастер Захария Янсен из Миддельбурга.

Первые выдающиеся открытия были сделаны как раз с помощью простого микроскопа. В середине XVII века блестящих успехов добился голландский естествоиспытатель Антони Ван Левенгук. В течение многих лет Левенгук совершенствовался в изготовлении крохотных (иногда меньше 1 мм в диаметре) двояковыпуклых линзочек, которые он изготавливал из маленького стеклянного шарика, в свою очередь получавшегося в результате расплавления стеклянной палочки в пламени. Затем этот стеклянный шарик подвергался шлифовке на примитивном шлифовальном станке. На протяжении своей жизни Левенгук изготовил не менее 400 подобных микроскопов. Один из них, хранящийся в университетском музее в Утрехте, дает более чем 300-кратное увеличение, что для XVII века было огромным успехом.

В начале XVII века появились сложные микроскопы, составленные из двух линз. Изобретатель такого сложного микроскопа точно не известен, но многие факты говорят о том, что им был голландец Корнелий Дребель, живший в Лондоне и находившийся на службе у английского короля Иакова I. В сложном микроскопе было два стекла: одно — объектив — обращенное к предмету, другое — окуляр — обращенное к глазу наблюдателя. В первых микроскопах объективом служило двояковыпуклое стекло, дававшее действительное, увеличенное, но обратное изображение. Это изображение и рассматривалось при помощи окуляра, который играл, таким образом, роль лупы, но только лупа эта служила для увеличения не самого предмета, а его изображения. В1663 году микроскоп Дребеля был усовершенствован английским физиком Робертом Гуком, который ввел в него третью линзу, получившую название коллектива. Этот тип микроскопа приобрел большую популярность, и большинство микроскопов конца XVII — первой половины VIII века строились по его схеме.

Принципы устройства

Главными компонентами микроскопа являются:

Система оптического микроскопа включает в себя ряд компонентов, основным из которых является объектив.

 
Оптика микроскопа состоит из двух элементов — окуляра и объектива которые закреплены в подвижном тубусе, находящимся на металлическом основании с предметный столиком. Увеличение микроскопа без дополнительных линз между окуляром и объективом равно произведению их увеличений
В наше время в микроскопе почти всегда есть система освещения и микро и макро винтами для настройки резкости.
В зависимости от назначения к исследовательскиму микроскопу могут прилагаться дополнительные системы и устройства, такие как
объективы с увеличеным разрешением 40, апертурой 0,65, коррекцией на толщину покровного стекла 0,17 мм и бесконечную длину тубуса

Объективы оптического микроскопа являются одной из главных частей и представляют собой сложный механизм для увеличения изображения изучаемого предмета.  Увеличенное с помощью оптического объектива изображение предмета рассматривается через окуляр, который также в свою очередь может создавать увеличение. Если объектив микроскопа каким-то образом искажает изображение, то это искажение будет усилено окуляром. Объектив микроскопа это сложная оптическая система, увеличевающее изображение объекта. Она является наиболее ответственной и основной частью исследовательского оборудования. Рассмотреть изображение созданное объективом, можно через окуляр.

Объективы исследовательских и других микроскопов кисключая стереоскопические в большей степени взаимозаменяемые и унифицированые. На взаимную заменяемость в первую очередь влияют присоединительные параметры объектива.

Объектами исследований микроскопов могут являться любые органические и не органические предметы, живые и не живые ткани, целые биологические организмы или их отдельные части.

Микроскоп имеет в качестве осветительной оптической системы галогеновую лампу или светодиодную систему. Достоинством светодиода является крайне долгое время работы, по сравнению с обычными галогеновыми лампами (в 100 и более раз превышающее данный показатель); малое энергопотребление (составляющее от 1/3 до 1/10 энергопотребления обычной лампы); спектральная “чистота” и т.д.

Об удобствах и неудобствах каждого способа

Максимально удобный способ

Наиболее удобным способом получения картинки с микроскопа оказался первый вариант со смартфоном. Смартфон есть у каждого, а адаптер при хорошем качестве изготовления имеет вполне доступную стоимость. Кроме того, если переходник используется с одним и тем же гаджетом, нет смысла его перенастраивать: один раз настроил, и впоследствии довольно оперативно можно его подключать.

Сгенерированная микроскопом картинка будет видна на дисплее телефона: вы сможете движениями пальцев по экрану изменять масштаб изображения, поворачивать его и применять стандартные фильтры. Полученные снимки можно будет по wi-fi сбросить коллеге или пересохранить на другом носителе для последующего редактирования на ПК.

Максимальное качество изображения

Если для решения ваших задач требуется хорошее качество изображения, вам стоит выбрать последний вариант – с подключением зеркального фотоаппарата

Большая (в смысле физических размеров) матрица и отсутствие дополнительных оптических элементов на пути света делает изображение максимально качественным, но стоит обратить внимание на два минуса

  1. Конструкция получается очень громоздкая, пользоваться ей не вполне комфортно – особенно, если у фотоаппарата нет поворотного дисплея. Придется подключать зеркалку к ноутбуку и ориентироваться по картинке на его экране.
  2. Не все микроскопы рассчитаны на подключение зеркального фотоаппарата: из-за некоторых их особенностей (отсутствия чернения внутренней поверхности фотоадаптера и пр.) вы можете увидеть на изображении блики.

Если вы все же готовы мириться со всеми трудностями ради получения максимально качественной картинки – это 100%-но ваш вариант!

Возможность анализа изображения

Если параллельно со съемкой вам нужно анализировать изображения и проводить какие-либо измерения, выбирайте только третий вариант. У камер-окуляров достаточно богатый функционал, к тому же сопутствующее ПО дает возможность корректи­ровки изображения, проведения расчетов, вычисления линейных размеров и площадей. Качество картинки получается вполне удовлетворительным, да и проблем с подключением устройства возникнуть не должно.

Минус только один – стоимость камеры: это удовольствие не из дешевых, но для решения всех перечисленных выше задач другие способы не подходят.

Максимально неудобный способ

Вы уже и сами догадались, какой способ попал в эту категорию. Да, подключение цифро-мыльницы – вариант на любителя. Подключается такой фотоаппарат к микроскопу с помощью того же адаптера, что и смартфон, но из-за выдвижного объектива конструкцией пользоваться неудобно.

К тому же очень сложно настроить положение камеры относительно окуляра. У некоторых фотоаппаратов глазок камеры слишком глубоко посажен в корпус объектива, поэтому его просто не получится зафиксировать на нужном расстоянии от окуляра.

У большинства фотоаппаратов эконом-класса предусмотрена функция автоотключения после некоторого периода бездействия, и не у всех моделей можно ее отключить. Но если параметры камеры вашего смартфона изначально уступают параметрам камеры фотоаппарата, придется наловчиться пользоваться для микрофотографирования «мыльницей».

Окуляры микроскопов

Окуляры (от лат. оculus, что означает «глаз») представляют собой лупы, с помощью которых наблюдается промежуточное изображение, создаваемое объективом и тубусной линзой. Кроме того, он проецирует выходной зрачок объектива на расстоянии, удобном для работы. Окуляр работает в узких пучках лучей, поэтому его сферическая и сферохроматическая аберрации малы по сравнению с остаточными аберрациями объектива и не влияют на качество изображения, даваемого объективом микроскопа. В некоторых окулярах исправляются хроматическая разность увеличения и дисторсия. Применение того или иного окуляра определяется типом объектива и характером исправления аберраций. Величина поля зрения микроскопа определяется размером диафрагмы поля зрения окуляра.

Окуляры не являются простыми линзами, а представляют собой скорригированные оптические системы, состоящие из нескольких линз. Обычно окуляр дает дополнительное увеличение Г=10x. Промежуточное изображение находится на расстоянии чтения, составляющем 25 см. Общее увеличение микроскопа рассчитывается по следующей формуле: Vмикроскопа=Vобъектива x Гокуляра.

На практике принято, чтобы один из окуляров мог фокусироваться, что позволяет уравнивать небольшую разницу в установке на резкость для обоих глаз.

В зависимости от своих параметров окуляры подразделяются на отдельные классы. Отличия между ними проявляются при больших полях зрения и, в особенности, на краю изображения.

Окуляры сконструированы таким образом, что промежуточное изображение микроскопа находится на расстоянии от них. Поэтому удобно размещать в плоскости промежуточного изображения различные шкалы, сетки или другие сравнительные элементы, можно производить необходимые измерения.

Увеличение

Увеличение микроскопа полезно при изучении биологических структур, особенно на клеточном уровне. Увеличение масштаба для четкого наблюдения того, что мы не можем видеть невооруженным глазом, позволяет нам исследовать формы жизни, как растительные, так и животные, и понять их функции.

Увеличение на микроскопе означает величину или степень увеличения наблюдаемого объекта. Он измеряется кратными числами, такими как 2-x, 4-x и 10-x, что указывает на то, что объект увеличен в два раза, в четыре раза или в 10 раз соответственно. Увеличение должно быть тщательно отрегулировано пропорционально расстоянию.

Чем выше увеличение, тем ближе объектив должен быть расположен к наблюдаемому объекту. Большинство микроскопов позволяют регулировать расстояние между объективом и объектом, а также обеспечивают заранее заданные положения по умолчанию, которые помещают линзы с более высоким увеличением ближе к объекту.

Увеличение регулируется как на окулярах, так и на линзах большинства типов микроскопов. Наиболее распространенными линзовыми увеличениями для типичных лабораторных микроскопов являются 4-x, 10-x и 40-x, хотя существуют альтернативы с более меньшим или большим.

Подключение смартфона

Развитие мобильных технологий в последнее десятилетие идет стремительными темпами: современные смартфоны оснащены уже достаточно качественными камерами, чтобы их можно было приспособить для микросъемки. Основная задача – соосно разместить объектив камеры смартфона и окуляр микроскопа. При этом вся конструкция должна обладать хорошей жесткостью, чтобы во время манипуляций с оптическим прибором смартфон не смещался, и изображение не исчезало из поля зрения.

На рынке Украины представлен только один достаточно качественный фотоадаптер от компании Konus, а именно Konus Adapter for Smartphone and Digital Camera. Он состоит из двух направляющих, крепления на окуляр либо окулярную трубку, площадки с переходником для установки смартфона и вспомогательной планки для устройств с большим объективом.

Направляющие и дополнительная планка выполнены из металла, а площадка с креплением смартфона – из качественного пластика. Направляющая большего размера позволяет регулировать положение смартфона по вертикали: амплитуда перемещения – 95 мм. С помощью меньшей направляющей настраивается положение смартфона в горизонтальной плоскости: диапазон перемещения – 75 мм.

У обеих направляющих есть фиксаторы положения, которые позволяют жестко зафиксировать площадку со смартфоном. Если вы снимите адаптер с микроскопа, а затем установите заново, то перенастраивать положение телефона не придется.

Площадка адаптера, на которую монтируется переходник для смартфона, имеет две прорези (см. рис. выше): они необходимы для регулировки расположения смартфона относительно окуляра. Проще говоря, вы можете либо вплотную придвинуть глазок камеры к окуляру, либо, наоборот, отодвинуть его. В нижней части переходника мы видим три отверстия: служат они для регулировки положения смартфона в зависимости от расположения глазка камеры на его корпусе.

Максимально допустимая диагональ смартфона – 5.5 дюйма: устройства с большей диагональю в адаптер просто не поместятся. Вес адаптера – 400 г, но учтите, что к этой цифре прибавится еще и вес смартфона. В итоге получим довольно увесистую конструкцию, которая может повлиять на устойчивость микроскопа.

Вся эта конструкция – телефон с адаптером – устанавливается на окулярный тубус микроскопа (или в 3-й оптический порт). Крепление напоминает тиски, но не с прямыми «губками», а с изогнутыми: для простоты этот механизм будем называть хомутом. Максимальный диаметр хомута – 45 мм, а значит, адаптер подойдет к любому оптическому прибору.

«Губки» у хомута прорезинены и не царапают зажимаемую поверхность. Если у используемого микроскопа окуляр металлический – можете смело крепить адаптер на окуляр; если пластиковый – рекомендуем устанавливать адаптер на окулярную трубку.

Пожалуй, этой информации будет достаточно, чтобы вы смогли пользоваться данным адаптером. Переходим к следующему способу получения картинки с микроскопа.

Лупа

Простейшим прибором для визуальных наблюдений является лупа. Лупой называют собирающую линзу с малым фокусным расстоянием (F < 10 см). Лупу располагают близко к глазу, а рассматриваемый предмет – в ее фокальной плоскости. Предмет виден через лупу под углом

где h – размер предмета. При рассматривании этого же предмета невооруженным глазом его следует расположить на расстоянии d = 25 см наилучшего зрения нормального глаза. Предмет будет виден под углом

Отсюда следует, что угловое увеличение лупы равно

Линза с фокусным расстоянием 10 см дает увеличение в 2,5 раза. Работу лупы иллюстрирует рис. 6.1.1.

1

Рисунок 6.1.1.

Действие лупы: а – предмет рассматривается невооруженным глазом с расстояния наилучшего зрения d = 25 см; б – предмет рассматривается через лупу с фокусным расстоянием F.

Увеличение

Фактическая сила или увеличение составного оптического микроскопа — это произведение мощностей окуляра ( окуляра ) и линзы объектива. Максимальные нормальные увеличения окуляра и объектива составляют 10 × и 100 × соответственно, что дает конечное увеличение в 1000 ×.

Увеличение и микрофотографии

При использовании камеры для захвата микрофотографии эффективное увеличение изображения должно учитывать размер изображения. Это не зависит от того, напечатан ли он на фотопленке или отображается на экране компьютера в цифровом виде .

В случае фотопленочных фотоаппаратов расчет прост; окончательное увеличение является произведением увеличения объектива, увеличения оптики камеры и коэффициента увеличения отпечатка пленки относительно негатива. Типичное значение коэффициента увеличения составляет около 5 × (для пленки 35 мм и отпечатка 15 × 10 см (6 × 4 дюйма)).

В случае цифровых камер необходимо знать размер пикселей в детекторе CMOS или CCD и размер пикселей на экране. Затем можно рассчитать коэффициент увеличения от детектора до пикселей на экране. Как и в случае с пленочной камерой, окончательное увеличение является произведением увеличения объектива, увеличения оптики камеры и коэффициента увеличения.

Сфера применения оптического микроскопа

В последние пару десятилетий микроскоп перестал быть исключительно лабораторным оборудованием и «вышел в люди»: сфера его применения значительно расши­рилась. Теперь микроскопы покупают не только для исследований клеток в научных и лечебно-диагностических центрах, но и для дома, для школы и просто в подарок.

В качественный микроскоп среднего ценового сегмента можно увидеть растительные и животные клетки, грибы и микроорганизмы. Объектом самостоятельного исследования может послужить что угодно! К примеру, клетки лука под микроскопом вполне способны пробудить интерес к биологии не только у школьника, но и у пенсионера. Изучение микромира может стать увлекательным хобби для взрослого, в чьем детстве микроскопов в школах еще не было.

Очень распространены сегодня компактные цифровые микроскопы, подключаемые к ПК или ноутбуку через USB-порт. Весят USB-микроскопы всего 100-200 г, при этом генерируют изображение высокого разрешения на увеличениях в сотни крат. Обычные бинокулярные модели также могут быть оснащены цифровым окуляром – специальной камерой, которая устанавливается в окулярную трубку вместо обычного окуляра. Благодаря возможности выводить изображение на монитор или стену аудитории через проектор, микроскопы с камерами востребованы в учебных учреждениях разного уровня.

Замечание. Если вы нуждаетесь в простых советах и не готовы тратить время на чтение общих сведений, пропустите следующие разделы до .

Строение микроскопа

Стандартный оптический прибор имеет в своем строении следующие детали:

  • насадку;
  • окуляр;
  • основание и штатив;
  • объективы;
  • револьверную головку;
  • предметный и координатный столики;
  • переключатель и осветитель;
  • винты макрометрической и микрометрической фокусировки;
  • конденсор с диафрагмой.

Оптическая система такого устройства представляет собой объективы, расположенные на револьверной головке, окуляры и в некоторых случаях призменный блок. При помощи оптической системы как раз и формируется изображение изучаемого образца на сетчатке глаза. Причем это изображение будет перевернутым.

В настоящее время многие детские микроскопы содержат в себе линзу Барлоу, применение которой позволяет добиться плавного увеличения изображения до 1000 крат и выше. Однако качество изображения при этом существенно страдает, что делает использование этой линзы в таких устройствах достаточно сомнительным.

В профессиональных устройствах для изменения увеличения используют только различные комбинации качественных объективов и окуляров. И уж конечно, в таких приборах никогда не будет использовать линза столько сомнительного качества.

Механическая система микроскопа представляет собой штатив, тубус, револьверную головку, механизмы фокусировки и предметный столик.

Для фокусировки изображения применяются механизмы фокусировки. Макрометрический винт применяют в работе с небольшими увеличениями, а микрометрический используется при высоких увеличениях. Стандартные школьные или детские микроскопы обычно комплектуются лишь макрометрическим винтом грубой фокусировки. Для лабораторных исследований в обязательном порядке понадобится и механизм тонкой фокусировки. Оптические устройства могут иметь раздельные механизмы грубой и точной фокусировки, а также содержать в себе коаксиальные винты микро и макрометрической регулировки фокуса.

Фокусировка прибора осуществляется при помощи перемещения предметного столика или тубуса устройства в вертикальной плоскости.

Предметный столик необходим для расположения на нем объекта. Можно выделить несколько их разновидностей:

  • стационарный;
  • подвижный;
  • координатный.

Более комфортным для работы считается координатный предметный столик, которые позволяет перемещать образец для исследования в горизонтальной плоскости.

Объективы микроскопа располагаются непосредственно на револьверной головке. Ее вращение позволяет выбрать какой-либо из объективов, тем самым меняя увеличение. Профессиональные устройства оснащены как правило съемными объективами, которые вкручиваются в револьверную головку. Дешевые же варианты микроскопов имеют встроенные объективы.

Тубус микроскопа содержит в себе окуляр. В устройствах с тринокулярной или бинокулярной насадкой существует возможность регулировки расстояния между зрачками, а также коррекции диоптрий, что позволяет подстроить микроскоп под индивидуальные особенности каждого наблюдателя. В детских устройствах в тубусе помимо окуляра может находиться также линза Барлоу.

Осветительная система оптического устройства представляет собой диафрагму, конденсор и источник света.

Источник света может быть как внешний, так и встроенный. Стандартный микроскоп обычно включает в себя нижнюю подсветку. В некоторых детских устройствах иногда используют боковую подсветку, но она не несет за собой никакого практического эффекта.

Лучшие материалы месяца

  • Коронавирусы: SARS-CoV-2 (COVID-19)
  • Антибиотики для профилактики и лечения COVID-19: на сколько эффективны
  • Самые распространенные «офисные» болезни
  • Убивает ли водка коронавирус
  • Как остаться живым на наших дорогах?

Конденсор и диафрагма используется для регулировки освещения микроскопа. Конденсоры могут быть однолинзовыми, двухлинзовыми или трехлинзовыми. При опускании или поднятии конденсора происходит либо рассеивание, либо конденсирование света, который освещает исследуемый образец.

Диафрагма представлена в двух вариантах: ирисовая, с плавным изменением диаметра, и ступенчатая, состоящая из нескольких отверстий разных диаметров. Соответственно увеличивая или уменьшая диаметр светового отверстия можно ограничить или увеличить поток света, льющегося на образец. Некоторые конденсоры оснащаются фильтродержателем, в который могут вставляться различные светофильтры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector