Радиация
Содержание:
- Спектр солнечного излучения
- Что несет гамма-излучение и какие последствия?
- Что такое радиоактивность в физике
- Лечение облучением – способы и виды
- Обзор
- Что такое бета-излучение и каковы его эффекты?
- В чём измеряется облучение?[править]
- Рентгеновское излучение
- Откуда появляется природная радиация?
- Нейтронное излучение
- Искусственная радиоактивность
- Интенсивность радиации и ее влияние на человека
- Все ли виды радиации опасны
Спектр солнечного излучения
Спектр солнечного излучения включает как коротковолновые, так длинноволновые области:
- гамма-лучи;
- рентгеновское излучение;
- УФ-радиацию;
- видимый свет;
- инфракрасную радиацию.
Свыше 95% излучения Солнца приходится на область «оптического окна» – видимого участка спектра с прилегающими областями ультрафиолетовых и инфракрасных волн. По мере прохождения через слои атмосферы действие солнечных лучей ослабляется – вся ионизирующая радиация, рентгеновские лучи и почти 98% ультрафиолета задерживаются земной атмосферой. Практически без потерь до земли доходит видимый свет и инфракрасное излучение, хотя и они частично поглощаются молекулами газов и частицами пыли, находящимися в воздухе.
В связи с этим, солнечное излучение не приводит к заметному повышению радиоактивного излучения на поверхности Земли. Вклад Солнца вместе с космическими лучами в формирование общей годовой дозы облучения составляет всего 0,3 мЗв/год. Но это усредненное значение, на самом деле уровень падающего на землю излучения различен и зависит от географического положения местности.
Что несет гамма-излучение и какие последствия?
В состав гамма-лучей входят частицы, не обладающие зарядом, но несущие большое количество энергии, поэтому такое излучение наиболее опасно. Оно распространяется на сотни километров от источника. Этот вид излучения обладает мутагенным действием – провоцирует изменения в ДНК. И тератогенным действием – вызывает патологии развития плода часто несовместимые с жизнью.
Интересно, что гамма-излучение одновременно является причиной появления раковых клеток и также при дозированном направленном облучении убивает их. Это применяется в медицине для лечения онкологических больных (лучевая терапия).
Гамма-частицы легко проникают через метал. Чтобы их остановить нужен материал с высокой плотностью (свинец, вольфрам, сталь и т.д.) или толстый слой бетона.
Что такое радиоактивность в физике
Любой атом имеет ядро и вращающиеся вокруг него отрицательные заряженные частицы — электроны.
Атомное ядро состоит из протонов и нейтронов. Причем число протонов всегда одинаково и соответствует порядковому номеру химического элемента в периодической системе Менделеева. Ядра, в которых количество нейтронов отличается, называются изотопами.
Некоторые атомные ядра могут превращаться в разные изотопы с выделением элементарных частиц или легких ядер. Собственно этот процесс и называется радиоактивностью.
Можно дать такое определение этому явлению: способность атомного ядра бесконтрольно распадаться с испусканием проникающих частиц.
Распад ядер возможен в том случае, если он сопровождается выделением энергии. Сегодня известно около 3 тыс. атомных ядер. Из них не являются радиоактивными всего лишь 264.
В физике существуют такие виды радиоактивного распада:
-
α-распад с выделением α-частицы;
-
β-распад с испусканием электрона и антинейтрино, позитрона и нейтрино, а также поглощение ядром электрона с выделением нейтрино;
-
γ-распад — излучение атомным ядром кванта ионизирующих лучей;
-
бесконтрольное деление ядра на осколки.
Лечение облучением – способы и виды
В медицине применяют несколько видов радиотерапии.
Системная лучевая терапия
Это лечение облучением всего организма, которое применяется, в частности в терапии злокачественных опухолей щитовидной железы. Такая методика основана на уникальной способности клеток этого органа вытягивать йод из организма подобно магниту. Они делают это даже тогда, когда вместо обычного йода им «подсовывают» его радиоактивный изотоп. Сей невидимый «лекарь» находит и уничтожает больные клетки щитовидной железы, в том числе и распространившиеся по всему организму. Предварительно пораженную щитовидку удаляют.
Тактика действий в этом случае такова. Радиоактивный йод, используемый для лечения облучением, упаковывают специальным образом – по принципу «матрешки». Он находится в небольшом флаконе, который помещается в свинцовую капсулу, ее же, в свою очередь, упаковывают в металлическую банку. Чтобы добыть лекарство, техник вскрывает банку консервным ножом и открывает капсулу, затем переливает радиоактивный йод в стакан – делать это можно только за стеклом с помощью специальных приспособлений. Приготовленный раствор передается пациенту, который должен выпить его до дна. Сразу после этого облученный радиацией человек прикрывает рот салфеткой, чтобы не допустить попадания опасных паров в воздух, и отправляется в палату. Он проводит в изоляции 3-4 дня, пока уровень радиации не снизится до безопасного. Такие палаты отрезаны от внешнего мира: в них нет плинтусов, всегда плотно закрыты окна, а вода из крана течет не в канализацию, а в специальную накопительную емкость с установленными в ней фильтрами. Эти меры помогают предотвратить проникновение частиц радиоактивного йода за пределы палаты.
Лечение внутренним облучением (брахитерапия)
Метод основан на облучении пораженного органа изнутри с помощью радиоактивных веществ, которые находятся в имплантатах, имеющих вид трубки, капсулы или тонкого провода. Эти элементы вводят вручную или с помощью медицинского оборудования непосредственно в опухоль либо рядом с ней.
Брахитерапия бывает:
- Постоянной. Имплантат вводится в организм для внутреннего облучения и остается в нем навсегда. Радиация работает определенное время, затем излучение постепенно затихает.
- Временной. Радиоактивный материал помещается внутрь на несколько минут, часов или дней. Получаемая доза может быть как низкой, так и высокой, в зависимости от тактики лечения.
Пациент остается в медучреждении в течение всего периода нахождения имплантата в организме. Если облучение длится всего несколько минут, как правило, проводят повторные сеансы.
Наружная радиотерапия
Отличие этого метода в том, что источник излучения находится на расстоянии от тела больного, то есть радиация воздействует на определенную часть организма снаружи. Такое лечение проводят курсами. Предварительно пациента обследуют, затем врач-радиолог определяет дозу применяемой с медицинскими целями радиации. После этого медики с помощью специального оборудования устанавливают точное место облучения. Дистанционная лучевая терапия требует от пациента сохранения неподвижной позы, чтобы излучение проецировалось исключительно на пораженные участки.
Обзор
Из всех лучевых методов диагностики только три: рентген (в том числе, флюорография), сцинтиграфия и компьютерная томография, потенциально связаны с опасной радиацией — ионизирующим излучением. Рентгеновские лучи способны расщеплять молекулы на составные части, поэтому под их действием возможно разрушение оболочек живых клеток, а также повреждение нуклеиновых кислот ДНК и РНК. Таким образом, вредное воздействие жесткой рентгеновской радиации связано с разрушением клеток и их гибелью, а также повреждением генетического кода и мутациями. В обычных клетках мутации со временем могут стать причиной ракового перерождения, а в половых клетках — повышают вероятность уродств у будущего поколения.
Вредное действие таких видов диагностики как МРТ и УЗИ не доказано. Магнитно-резонансная томография основана на излучении электромагнитных волн, а ультразвуковые исследования — на испускании механических колебаний. Ни то ни другое не связано с ионизирующей радиацией.
Ионизирующее облучение особенно опасно для тканей организма, которые интенсивно обновляются или растут. Поэтому в первую очередь от радиации страдают:
- костный мозг, где происходит образование клеток иммунитета и крови,
- кожа и слизистые оболочки, в том числе, желудочно-кишечного тракта,
- ткани плода у беременной женщины.
Особенно чувствительны к облучению дети всех возрастов, так как уровень обмена веществ и скорость клеточного деления у них гораздо выше, чем у взрослых. Дети постоянно растут, что делает их уязвимыми перед радиацией.
Вместе с тем, рентгеновские методы диагностики: флюорография, рентгенография, рентгеноскопия, сцинтиграфия и компьютерная томография широко используются в медицине
Некоторые из нас подставляются под лучи рентгеновского аппарата по собственной инициативе: дабы не пропустить что-то важное и обнаружить незримую болезнь на самой ранней стадии. Но чаще всего на лучевую диагностику посылает врач
Например, вы приходите в поликлинику, чтобы получить направление на оздоровительный массаж или справку в бассейн, а терапевт отправляет вас на флюорографию. Спрашивается, к чему этот риск? Можно ли как-то измерить «вредность» при рентгене и сопоставить её с необходимостью такого исследования?
Что такое бета-излучение и каковы его эффекты?
Бета-излучение представляет собой поток отрицательно заряженных частиц, которые обладают более высокой проницаемостью, чем альфа. Но их ионизирующая способность в десятки раз ниже.
Бета-частицы распространяются на расстояние до 20 метров от радиоизотопа, поэтому они более опасны, чем альфа-частицы. Они легко проникают через одежду и кожу, воздействуя на клетки живого организма. Именно это излучение называют одной из причин появления раковых опухолей.
Для надежной защиты от этого вида излучения достаточно металлического покрытия в несколько миллиметров, противогаза и своевременного приема радиопротекторных препаратов.
В чём измеряется облучение?[править]
Есть единицы для измерения экспозиционной, поглощённой дозы и эквивалентной дозы. Разница между ними заключается в способе измерения, вкратце так: эквивалентная доза измеряется по последствиям для организма, которые сравниваются с последствиями от некой эталонной дозы облучения. Поглощённая доза измеряется по замерам энергии излучения и массы вещества, которое его поглотило. Экспозиционная — по подсчёту ионов в сухом воздухе. Какие единицы чему соответствуют?
Рентген — единица экспозиционной дозы. В эквивалентной дозе рентгену соответствует бэр, в поглощённой дозе — рад. Для обывателя рентген, бэр и рад — примерно одно и то же.
Зиверт — единица эквивалентной дозы. В поглощённой дозе зиверту соответствует грэй. Для обывателя между зивертом и грэем также разницы особой нет.
1 Зв = 100 бэр.
1 Гр = 100 рад.
В общем, вторые две единицы в сто раз больше первых трёх.
Какая доза чем грозит? Вот несколько примерных доз и их последствия:
- 5 рентген: предельно допустимая «безвредная» доза в год для людей, работающих с радиацией или рентгеновскими аппаратами.
- 25 рентген: предельно допустимая доза, которую можно однократно схватить как «оправданный риск» в особых обстоятельствах. Может вызвать лёгкую лучевую болезнь.
- 100 рентген: начало тяжёлой лучевой болезни, поражение костного мозга.
- 300—500 рентген: примерно каждого второго, схватившего такую дозу, спасти не удаётся. Основной фактор смертности — выход из строя костного мозга, болеть месяц-другой.
- 1000 рентген: гарантированная смерть, медленная и довольно мучительная. Основной фактор смертности — пищеварительные расстройства и отравление радиотоксинами, умирать около недели.
- 10 000 рентген: достаточно быстрая смерть от выхода из строя нервной системы или разрушения миокарда, лежать без сознания не больше суток.
- 100 000 рентген: похоронят в свинцовом гробу.
- 1 000 000 рентген: на могиле вместо цветов вырастут гигантские грибы.
- 10 000 000 рентген: на фотографиях покойного выпадут все волосы.
Пациенту, схватившему от 500 до 1000 рентген, плохо становится далеко не сразу. Он может ещё около недельки гулять, веселиться, радоваться, что его досрочно демобилизовали. А уже на вторую-третью недельку начинают проявляться последствия отказа костного мозга, и пациент начинает умирать от малокровия.
Рентгеновское излучение
Оно имеет внеядерное происхождение. Его источник – рентгеновская трубка и некоторые радиоактивные нуклиды. Рентгеновские лучи возникают в результате сильного ускорения заряженных частиц или в результате переходов в электронных оболочках атомов.
Рентгеновская трубка имеет катод и анод. При нагревании катода происходит излучение электронов. Движение этих частиц ускоряется электромагнитным полем, и частицы падают на анод, резко снижая скорость. Вследствие этого и возникают рентген-лучи.
Рентген-излучение, проходящее сквозь вещество, рассеиваются либо поглощается. Это их свойство используется в медицине.
Откуда появляется природная радиация?
Естественный радиационный фон Земли связан с ее историей и эволюцией биосферы. С момента зарождения нашей планеты она находилась под постоянным влиянием космических излучений. Колоссальное количество космогенных радионуклидов было задействовано при формировании земной коры. Ученые полагают, что тектонические процессы, расплавленная магма, образование горных систем обязаны своим появлением радиоактивному распаду и разогреву недр. В местах разломов, сдвигов и растяжений земной коры, океанических впадин радионуклиды выходили на поверхность и появлялись места с мощным ионизирующим излучением. Образования сверхновых звезд также оказывали влияние на Землю – уровень космического излучения повышался на ней в десятки раз. Правда, сверхновые рождались примерно одни раз в сотни миллионов лет. Постепенно радиоактивность Земли снижалась.
В настоящее время биосфера Земли по-прежнему испытывает воздействие космического излучения, радионуклидов, рассеянных в твердых земных породах, океанах, морях, подземных водах, воздухе и в живых организмов. Совокупность перечисленных составляющих радиационного фона (ионизирующего излучения) принято называть естественным радиоактивным фоном. Естественная радиоактивность включает несколько компонентов:
- космические излучения;
- радиоактивные вещества в составе земных недр;
- радионуклиды в воде, пище, воздухе и стройматериалах.
Естественная радиация является неотъемлемой составляющей природной среды обитания. Честь ее открытия принадлежит французскому ученому А. Беккерелю, который случайно открыл феномен естественной радиоактивности в 1896 году. А в 1912 году австрийский физик В. Гесс открыл космические лучи, сравнив ионизацию воздуха в горах и на уровне моря.
Мощность космического излучения неоднородна. Ближе к поверхности земли она уменьшается за счет экранирующего атмосферного слоя. И, наоборот, в горах она сильнее, поскольку защитный экран атмосферы слабее. Например, в самолете, который летит в небе на высоте 10 000 метров, уровень радиации превышает приземную радиацию почти в 10 раз. Сильнейший источник радиоактивного излучения – Солнце. И здесь атмосфера служит нашим защитным экраном.
Естественный радиационный фон в различных местах мира
Допустимый радиационный фон в разных уголках планеты значительно отличается. Во Франции, например, годовая доза естественного облучения составляет 5 мЗв, в Швеции — 6,3 мЗв, а в нашем Красноярске всего 2,3 мЗв. На золотых пляжах Гуарапари в Бразилии, где ежегодно отдыхает больше 30000 человек, уровень радиации составляет 175 мЗв/год из-за высокого содержания тория в песке. В горячих источниках городка Рам-Сер в Иране уровень радиации достигает 400 мЗв/год. На знаменитом курорте Баден-Бадене также повышенный радиационный фон, как и на некоторых других популярных курортах. Радиационный фон в городах контролируют, но это усредненный показатель. Как не попасть впросак, если вы не хотите подвергать здоровье испытанию повышенной дозой естественных радионуклидов? Индикатор радиоактивности станет вашим надежным экспертом в путешествиях.
Нейтронное излучение
- излучаются: нейтроны
- проникающая способность: высокая
- облучение от источника: километры
- скорость излучения: 40 000 км/с
- ионизация: от 3000 до 5000 пар ионов на 1 см пробега
- биологическое действие радиации: высокое
Нейтронное излучение — это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.
Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.
Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.
Искусственная радиоактивность
В отличие от естественных источников радиации, искусственная радиоактивность возникла и распространяется исключительно силами людей. К основным техногенным радиоактивным источникам относят ядерное оружие, промышленные отходы, атомные электростанции — АЭС, медицинское оборудование, предметы старины, вывезенные из «запретных» зон после аварии Чернобыльской АЭС, некоторые драгоценные камни.
Радиация может попадать в наш организм как угодно, часто виной этому становятся предметы, не вызывающие у нас никаких подозрений. Лучший способ обезопасить себя — проверить своё жилище и находящиеся в нём предметы на уровень радиоактивности либо купить дозиметр радиации. Мы сами ответственны за свою жизнь и здоровье. Защитите себя от радиации!
Источники радиоактивного облучения среднестатистического россиянина за год
Также действуют следующие нормативные документы, касающиеся ионизирующего излучения:
В соответствии с действующим СанПиН «мощность эффективной дозы гамма-излучения внутри зданий не должна превышать мощности дозы на открытой местности более чем на 0,2 мкЗв/час». При этом не сказано, какова же допустимая мощность дозы на открытой местности! В СанПиН 2.6.1.2523-09 написано, что «допустимое значение эффективной дозы, обусловленной суммарным воздействием природных источников излучения, для населения не устанавливается. Снижение облучения населения достигается путем установления системы ограничений на облучение населения от отдельных природных источников излучения», но при этом при проектировании новых зданий жилищного и общественного назначения должно быть предусмотрено, чтобы среднегодовая эквивалентная равновесная объемная активность дочерних изотопов радона и торона в воздухе помещений не превышала 100 Бк/м3, а в эксплуатируемых зданиях среднегодовая эквивалентная равновесная объемная активность дочерних продуктов радона и торона в воздухе жилых помещений не должна превышать 200 Бк/м3.
Однако в СанПиН 2.6.1.2523-09 в таблице 3.1 указано, что пределом эффективной дозы облучения для населения является 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год. Таким образом, можно рассчитать, что предельная мощность эффективной дозы равна 5мЗв разделить на 8760 часов (количество часов в году), что равно 0,57мкЗв/час.
Интенсивность радиации и ее влияние на человека
Как уже говорилось выше, наличие в воздухе ионизирующих веществ можно проанализировать и точно определить с помощью специального устройства — дозиметра. В каких единицах измеряется радиация? Дозиметр позволяет определять радиационное поле не только в человеческом организме, но и на предметах и продуктах питания
Важно напомнить, что все радиационные элементы – это частицы с определенной способностью проникать через твердые поверхности. Проникаемость и единицы измерения радиации в таблице зависят напрямую от типа происхождения радиационного поля и от заряженности частиц, из которых она состоит
То есть, альфа-излучения, из которых может состоять ионизирующее вещество, могут практически не вредить человеку и никак не влиять на его самочувствие. Однако бета-лучи крайне быстро проникают внутрь тканей и органов и видоизменяют их биологическую структуру, из-за чего у человека могут диагностировать опухоли, раковые заболевания и отслоения слизистых оболочек.
Закажите бесплатно консультацию эколога
В чем измеряется радиация в единицах измерения и где используют дозиметры сегодня? Сегодня радиационное поле может проверить и проанализировать любой желающий человек, у которого есть дозиметр. Единицы, в чем измеряется радиация, — это рентгены или зиверты. Однако специальные научные проверки и профилактические измерения радиационного поля проводятся в следующих случаях:
Радиация и единицы измерения радиационного фона чаще всего проверяют на территории, которая прилегает к атомным электростанциям, а также на территории, которая может быть потенциально заражена в результате временных или серьезных аварий и неполадок в устройствах на АЭС. К примеру, после катастрофы на атомной электростанции в Чернобыле уровень радиационного поля проверялся не только в зоне отчуждения, но и на многих прилегающих к ней территориях и полях, по причине чего многие соседние села были также эвакуированы из-за заражения местности.
В чем измеряется излучение радиации? Радиационное поле стоит проверять перед началом строительства и планированием закладывания фундамента нового здания
По причине того, что многие подземные породы и источники могут выделять радиационные потоки, перед начало крупного строительства стоит убедиться в том, что выбранное место является максимально безопасным для проживания и не будет оказывать негативное влияние на организм.
Концентрацию ионизирующих веществ в воздухе в единицах измерения радиации зивертах или рентгенах стоит проверить, если вы планируете маршрут по неизведанным или давно заброшенным маршрутам в незнакомом месте, а также если вы планируете туристический поход в места, которые находятся неподалеку от атомных станций или химических лабораторий.
В чем измеряется солнечная радиация? Проверять уровень загрязненности воздуха на предмет радиационных элементов важно также при планировании приобретения частной собственности в незнакомом вам районе. Жилой фонд – это огромная база различной недвижимости, некоторый процент которой может быть представлен по крайне привлекательной цене по причине близости к опасным источникам или нахождения в зоне повышенного радиационного поля
Поэтому любая покупка крупного масштаба должна быть тщательно проверена.
В чем измеряется облучение радиацией? Следует отметить, что если человеческий организм можно частично очистить от радиационных элементов с помощью определенных продуктов питания и медикаментов, то открытую территорию или предметы очистить от ионизирующих веществ невозможно. Поэтому прежде чем покупать новый дом, планировать строительство или приобретать территорию в необследованной местности, убедитесь в том, что это место не является зараженным радиацией или находится на относительно безопасном расстоянии от источника радиации и ее распространителя. Бытовой дозиметр в этом случае будет отличным способом обезопасить свою жизнь и жизнь своих близких.
Все ли виды радиации опасны
Для определения ионизирующего излучения применяется несколько специальных терминов, потому что оно может быть разного происхождения. Этим термином обозначают любые потоки, образованные фотонами, элементарными частицами или осколками атомов, которые могут ионизировать вещество. Необходимо отметить следующее:
- Ионизация – процесс образования ионов (положительно или отрицательно заряженных) из молекул или атомов. Результатом этого взаимодействия становится поглощение тепла и выброс электронов.
- Они ионизируют вещество, в которое попадают. Проникая в клеточные структуры, разрушают и дестабилизируют их. Опасным итогом этого действия становится сбой иммунитета, прекращение привычных химических взаимообменов, обеспечивающих жизнедеятельность клетки и именуемых естественным метаболизмом.
- Вызывая выброс свободных электронов, такой распад образует свободные радикалы. Интенсивность реакции и провокация выброса большей или меньшей интенсивности и определяет то, что принято обозначать как уровень радиации.
- Не все виды излучения для человека опасны. Некоторые могут становиться таковыми при определенных условиях, но обычно у них недостаточно энергии, чтобы вызвать ионизацию.
- Ультрафиолетовые и инфракрасные лучи, видимый свет и радиодиапазоны не могут в нормальном (основном) состоянии вызвать ионизацию.
- Исследования показали, что источником излучения радиации могут стать электромагнитное и рентгеновское, потоки частиц различного вида (например, нейтроны, протоны, альфа-частицы или ионы, как результат ядерного деления).
Знак
Оно запускает деструкцию белков, становится причиной разрушения клеток живого организма или их перерождения. В природе существуют естественные источники таких потоков, но и человек в немалой степени поучаствовал в возникновении потенциальных резервуаров, откуда могут появляться опасные частицы.