Подробно об самых распространенных термопластичных полимерах

Если тип пластика неизвестен

Вот к нам в руки попала пластиковая деталь, не имеющая на себе никакой маркировки. Но нам позарез нужно выяснить что это за материал, или хотя бы его тип — термопласт это или реактопласт.

Потому что, если речь идет, например, о сварке, то она возможна лишь с термопластами (для ремонта термореактивных пластмасс применяются клеевые композиции). Кроме того, свариваться могут только одноименные материалы, разнородные просто не будут взаимодействовать. В связи с этим появляется необходимость «опознать» неизвестный пластик, чтобы правильно подобрать ту же сварочную присадку.

Идентификация типа пластика — задача непростая. Анализ пластмасс производится в лабораториях по различным показателям: по спектрограмме сгорания, реакции на различные реактивы, запаху, температуре плавления и т.д.

Тем не менее, существует несколько простейших тестов, позволяющих определить приблизительный химический состав пластика и отнести его к тому или иному типу полимеров. Один из таких — анализ поведения образца пластика в открытом источнике огня.

Для теста нам понадобится проветриваемое помещение и зажигалка (или спички), с помощью которой нужно осторожно поджечь кусочек испытуемого материала. Если материал плавится, значит мы имеем дело с термопластом, если не плавится — перед нами реактопласт. Теперь убираем пламя

Если пластик продолжает гореть, то это может быть ABS-пластик, полиэтилен, полипропилен, полистирол, оргстекло или полиуретан. Если гаснет — скорее всего это поливинилхлорид, поликарбонат или полиамид

Теперь убираем пламя. Если пластик продолжает гореть, то это может быть ABS-пластик, полиэтилен, полипропилен, полистирол, оргстекло или полиуретан. Если гаснет — скорее всего это поливинилхлорид, поликарбонат или полиамид.

Далее анализируем цвет пламени и запах, образующийся при горении. Например, полипропилен горит ярким синеватым пламенем, а его дым имеет острый и сладковатый запах, похожий на запах сургуча или жженной резины. Слабым синеватым пламенем горит полиэтилен, а при затухании пламени чувствуется запах горящей свечи. Полистирол горит ярко, и при этом сильно коптит, а пахнет довольно приятно — у него сладковатый цветочный запах. Поливинилхлорид, наоборот, пахнет неприятно — хлором или соляной кислотой, а полиамид — горелой шерстью.

Кое-что о типе пластика может сказать и его внешний вид. Например, если на детали наблюдаются явные следы сварки, то она наверняка изготовлена из термопласта, а если имеются следы снятых наждаком заусенцев, значит это реактопласт.

Также можно провести тест на твердость: попробовать срезать небольшой кусочек пластмассы ножом или лезвием. С термопласта (он более мягкий) стружка будет сниматься, а вот реактопласт будет крошиться.

Или еще один способ: погружение пластика в воду. Этот метод позволяет довольно просто определить пластики, входящие в группу полиолефинов (полиэтилен, полипропилен и др.). Эти пластмассы будут плавать на поверхности воды, так как их плотность почти всегда меньше единицы. Другие пластики имеют плотность больше единицы, поэтому они будут тонуть.

Эти и другие признаки, по которым можно определить тип пластика, представлены ниже в виде таблицы.

P.S

В следующей статье мы уделим внимание вопросам подготовки и покраски пластиковых деталей

Сферы применения TPV

Автопром:

  • крупногабаритные и сложные по геометрии автомобильные детали,
  • накладки на педали,
  • уплотнители для окон, багажника, фар и др.
  • детали интерьера,
  • автоковры,
  • пыльники, чехлы шруса,
  • вибрационные и шумопоглощающие прокладки.

Строительство:

  • декоративные отделочные материалы для потолка и пола,
  • оконные и дверные уплотнители,
  • противоскользящие накладки на ступени,
  • рукоятки строительного инструмента (кистей, мастерков и др.),
  • уплотнители для гидроизоляции.

Электрика — Электроника:

Бытовая техника, сантехника:

  • шланги, фитинги и уплотнения стиральных и посудомоечных машин,
  • рукоятки и эластичные детали электроинструмента (дрели и др.),
  • гибкие детали кухонных принадлежностей (для автоматической мойки).

Игрушки, спорт:

  • сиденья для велосипеда,
  • гибкие детали авторучек,
  • колеса для колясок, игрушечных машин, гибкие игрушки,
  • покрытия для стадионов.

Сокращенные названия

Сокращение Материал Некоторые торговые марки
TPE Термопластичный эластомер ТПЭ
TPA Полиамидный ТПЭ Bebax
TPA-EE ТПЭ с жесткими полиамидными блоками и гибкими полиэфирными блоками (сегментами) Grilamid
TPA-ES ТПЭ с жесткими полиамидными блоками и гибкими сложноэфирными блоками (сегментами)
TPA-ET ТПЭ с жесткими полиамидными блоками и гибкими простыми эфирными блоками (сегментами)
TPC Сополиэфирный ТПЭ Arnite, Bexloy, Ecdel, Hytrel, Lomod, Pibiflex, Riteflex
TPC-EE Сополиэфирный ТПЭ с гибкими сегментами, имеющими простые и сложные эфирные связи
TPC-ES Сополиэфирный ТПЭ с гибкими сложноэфирными сегментами
TPC-ET Сополиэфирный ТПЭ с простыми эфирными сегментами
TPO Олефиновый ТПЭ Deflex, Engage
TPO-(EPDM+PP) Полиолефиновый ТПЭ на основе этиленпропилендиенового каучука и изотактического полипропилена Exact, Forflex, Hifax
TPO-(EVAC+PVDC) Полиолефиновый ТПЭ на основе смеси поливинилиденхлорида и частично сшитого сополимера этилена и винилацетата Hybrar, Kelbuton, Keltan, Milastome
TPS Полистирольный ТПЭ Hybrar, Multiflex
TPS-SBS Полистирольный ТПЭ из стиролбутадиенстирольного блок-сополимера Kraton D, Sopfrene, Stereon, Styrof
TPS-SIS Полистирольный ТПЭ из стиролизопренстирольного блок-сополимера
TPS-SEBS Полистирольный ТПЭ из стиролэтиленбутенстирольного блок-сополимера Bergaflex, Europrene, Kraton G
TPS-SEPS Полистирольный ТПЭ из стиролэтиленпропиленстирольного блок-сополимера Septon
TPU Уретановый ТПЭ Desmopan, Esthane, Elastollan, Pell
TPU-ARES Полиуретановый ТПЭ с ароматическими жесткими сегментами и сложноэфирными гибкими сегментами
TPU-ARET Полиуретановый ТПЭ с ароматическими жесткими сегментами и простыми эфирными гибкими сегментами
TPU-AREE Полиуретановый ТПЭ с ароматическими жесткими сегментами и сложноэфирными и простыми эфирными гибкими сегментами
TPU-ARCE Полиуретановый ТПЭ с ароматическими жесткими сегментами и поликарбонатными гибкими сегментами
TPU-ARCL Полиуретановый ТПЭ с ароматическими жесткими сегментами и поликапролактоновыми гибкими сегментами
TPU-ALES Полиуретановый ТПЭ с алифатическими жесткими сегментами и сложноэфирными гибкими сегментами
TPU-ALET Полиуретановый ТПЭ с алифатическими жесткими сегментами и простыми эфирными гибкими сегментами
TPV ТПЭ со сшитым каучуком Forprene, Santoprene, Sarlink
TPV-(EPDM-X+PP) ТПЭ на основе густосетчатого этиленпропилендиенового каучука и полипропилена
TPV-(NBR-X+PP) ТПЭ на основе густосетчатого бутадиенакрилонитрильного каучука и полипропилена
TPV-(NR-X+PP) ТПЭ на основе густосетчатого натурального каучука и полипропилена
TPV-(ENR-X+PP) ТРЕ на основе густосетчатого эпоксидированного натурального каучука и полипропилена
TPV-(PBA-X+PP) ТПЭ на основе сетчатого полибутилакрилата и полипропилена
TPZ Неклассифицированный ТПЭ
TPZ-(NBR+PVC) ТПЭ на основе смеси поливинилхлорида с бутадиенакрилонитрильным каучуком

Полиэтилен

Продукт полимеризации этилена:

n(CH2 = CH2) -> — СН2 — СН2 — СН2 — СН2 -.

этилен полиэтилен

Молекулярный вес около 20000, плотность 0,92 г/см3, σВ = 65…100 МПа, относительное удлинение d =150…500 %. Пластичность сохраняется до низких температур (минус 70 С). Полиэтилен водо- и химически стоек. Имеет высокие диэлектрические свойства.

По плотности полиэтилен подразделяют на полиэтилен низкой плотности, получаемый при полимеризации при высоком давлении (ПЭВД), содержащий 55…65 % кристаллической фазы, и полиэтилен высокой плотности, получаемый при низком давлении (ПЭНД), имеющей кристалличность до 74…95 %. Чем выше плотность, тем выше прочность и теплостойкость. Длительно можно применять его при температуре 60…100 С.

Недостатком полиэтилена является его подверженность старению. Под старением полимерных материалов понимается самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении.

Причинами старения являются свет, теплота, кислород, озон и другие немеханические факторы. Старение ускоряется при многократных деформациях, повышенной температуре. Как правило, повышается твердость, хрупкость, наблюдается потеря эластичности.

Изготавливают коррозионно-стойкие трубы, тройники, уплотнения, прокладки, шланги, пленки, оболочки контейнеров и емкостей для хранения сильных кислот, электроизоляторы.

Бутадиен – стирольный каучук

Также следует рассматривать каучук СКС, который получается при сочетании бутадиена и стирола. Стоит учитывать, что этот вид синтетического каучука сегодня получил самое широкое применение. Больше всего можно встретить СКС-30. Среди их особенностей отметим нижеприведенные моменты:

  1. Вещество хорошо растворимо в бензине или бензолах.
  2. Клеящие способности вещества достаточно низкие. Для повышения данного свойства проводится добавление канифоли и многих других веществ.
  3. Высокая морозостойкость также является исключительным эксплуатационным качеством.

В строительстве большое распространение получили бутадиен — стирольный латекс. В их составе около 47% каучука. Из этого термореактивного полимера проводится изготовление стабилизационных латексов.

На основе материалов данной группы изготавливают клеящие мастики, некоторые цементные краски и составы для наливных полов.

Особенности материала

Vertex Thermosens является полужестким термопластичным материалом, который выпускается в виде гранул разнообразных цветовых оттенков, что позволяет при изготовлении устройства добиться его максимального сходства с тканями ротовой полости пациента.

Специалисты в области протезирования указывают на следующие характеристики материала, которые выгодно выделяют его на фоне других пластмасс в ходе использования:

  • высокая скорость и простота полировки;
  • низкая степень усадки материала, обеспечивающая точность посадки готового изделия в ротовой полости пациента;
  • прочность, позволяющая отказаться от применения металлических составляющих;
  • простота в подборе цветовой гаммы благодаря наличию 12 оттенков гранул вещества;
  • полупрозрачность и светоотражаемость, позволяющие минимизировать заметность конструкции в ротовой полости пациента;
  • возможность перебазировки и напрессовывания изделия.

Пациенты стоматологических клиник, которым были установлены изделия из полиамида Vertex Thermosens, также называют его многочисленные достоинства:

  • высокая прочность, способствующая равномерному распределению жевательной нагрузки, и исключающая растрескивание и деформацию изделия под воздействием высоких температур и механического воздействия;
  • гипоаллергенность за счет отсутствия мономеров, химических добавок и токсических веществ;
  • качественная цветопередача готового изделия и отсутствие его окрашивания в процессе использования;
  • низкая пористость, гарантирующая отсутствие впитывания посторонних запахов;
  • легкость конструкции за счет отсутствия металлических деталей.

Гибкий и удобный протез: миф или реальность?

Пластичные протезы позволят навсегда забыть о дискомфорте, который характерен при использовании жёстких конструкций. Установив их, пациент получает следующие преимущества:

  • естественная форма зубного ряда;
  • натуральный цвет зубов;
  • наличие фиссурно-бугоркового контакта искусственных зубов с зубами-антагонистами;
  • отменная фиксация;
  • высокая эстетичность и надёжность.

Для изготовления термопластичных протезов используют специальный вид пластмассы, который производят по уникальной технологии. Главная особенность данного материала — он переходит в высокоэластичное состояние при нагревании до определённой температуры. Протезы из термопластика отличаются следующими свойствами:

  • высокая эластичность и прочность;
  • точная посадка и надёжная фиксация;
  • лёгкость и отсутствие натираний;
  • эстетичный вид и натуральный вид кламмеров.

Когда оправдано применение термопластов

Термопластичные пластины — это решение для тех пациентов, у которых невозможна обточка зубов и присутствуют небольшие дефекты зубного ряда. Благодаря уникальной лёгкости и мягкости конструкций, термопластичные протезы могут применяться даже у пациентов с воспалением околозубных тканей.

Кроме этого данный материал протезов не вызывает раздражения тканей (что характерно для акриловых конструкций), предотвращает развитие воспалительных процессов в ротовой полости, которые часто возникают во время применения пластмассовых конструкций.

Данный вид протезов не требует особого ухода. Для долгой службы и сохранения эстетичного вида протезов следует использовать такие средства как Корега, Ультра Соник Валлпласт или ВалКлин. Допускается также применение зубной нити и обычного мыла. Каждые полгода следует проходить процедуру профессиональной чистки.

Что такое пластмасса?

В соответствии с отечественным государственным стандартом:

Если из такого сложного определения убрать первое слово «пластмассами», можно даже и не догадаться, о чем вообще идет речь. Что ж, попробуем немного разобраться.

«Пластмассы» или «пластические массы» назвали так потому, что эти материалы способны при нагреве размягчаться, становиться пластичными, и тогда под давлением им можно придать определенную форму, которая при дальнейшем охлаждении и отверждении сохраняется.

Основу любой пластмассы составляет полимер (то самое «высокомолекулярное органическое соединение» из определения выше).

Слово «полимер» происходит от греческих слов «поли» («много») и «мерос» («части» или «звенья»). Это вещество, молекулы которого состоят из большого числа одинаковых, соединенных между собой звеньев. Эти звенья называют мономерами («моно» — один).

Так, например, выглядит мономер полипропилена, наиболее применяемого в автомобилестроении типа пластика:

Молекулярные цепи полимера состоят из практически бесчисленного числа таких кусочков, соединенных в одно целое.

Цепочки молекул полипропилена

По происхождению все полимеры делят на синтетичес­кие и природные. Природные полимеры составляют основу всех животных и растительных организмов. К ним относят полисахариды (целлюлоза, крахмал), белки, нуклеиновые кислоты, натуральный каучук и другие вещества.

Хотя модифицированные природные полимеры и находят промышленное применение, большинство пластмасс являются синтетическими.

Синтетические полимеры получают в процессе химического синтеза из соответствующих мо­номеров.

В качестве исходного сырья обычно применяются нефть, природный газ или уголь. В результате химической реакции полимеризации (или поликонденсации) множество «маленьких» мономеров исходного вещества соединяются между собой, будто бусины на ниточке, в «огромные» молекулы полимера, который затем формуют, отливают, прессуют или прядут в готовое изделие.

Так, например, из горючего газа пропилена получают пластик полипропилен, из которого делают бамперы:

Теперь вы наверное догадались, откуда берутся названия пластмасс. К названию мономера добавляется приставка «поли-» («много»): этилен → полиэтилен, пропилен → полипропилен, винилхлорид → поливинилхлорид и т.д.

Международные краткие обозначения пластмасс являются аббревиатурами их химических наименований. Например, поливинилхлорид обозначают как PVC (Polyvinyl chloride), полиэтилен — PE (Polyethylene), полипропилен — PP (Polypropylene).

Кроме полимера (его еще называют связующим) в состав пластмасс могут входить различные наполнители, пластификаторы, стабилизаторы, красители и другие вещества, обеспечивающие пластмассе те или иные свойства, такие как текучесть, пластичность, плотность, прочность, долговечность и т.д.

Свойства

Изделия из пластмасс имеют следующие особенности:

Купить пресс-форму для тпа

Оставить запрос

1. Для дизайнеров и инженеров это тот материал, из которого можно изготавливать самые сложные по форме конструкции. 2. Отличаются экономичностью в сравнении с аналогичными продуктами из других материалов. Малые энергетические затраты при производстве. Простота формовки. 3. Почти все виды пластика не нуждаются в покраске, так как они имеют свои различные цветовые гаммы. 4. У них небольшой вес. 5. Обладают высокой эластичностью. 6. Являются отличными диэлектриками (т.е. практически не проводят электрический ток). 7. Обладают низкой теплопроводностью (отличные теплоизоляторы). 8. У материалов высокий коэффициент шумоизоляции. 9. Не подвержены, в отличие от металлов коррозии. 10. Имеют хорошую устойчивость к перепадам дневных и межсезонных температур. 11. У пластиков высокая стойкость ко многим агрессивным химическим средам. 12. Они могут выдержать большие механические нагрузки.

Полиэтилен

Полиэтилен (полиэтилен, полиэтилен, ПЭ) — это семейство аналогичных материалов, классифицированных по их плотности и молекулярной структуре. Он также известен как поли, и его получают аддитивной полимеризацией этилена. Он может иметь низкую или высокую плотность в зависимости от процесса, используемого при его производстве. Он устойчив к влаге и большинству химикатов. Он эластичен при комнатной температуре (и низкой температуре) и может термосвариваться. Поскольку это недорогой пластик, его производят в больших количествах, чтобы удовлетворить спрос. Например:

  • сверхвысокомолекулярный полиэтилен (СВМПЭ) прочен и устойчив к химическим веществам. Из него изготавливают движущиеся детали машин, подшипники, шестерни, искусственные суставы и некоторые бронежилеты.
  • Полиэтилен высокой плотности (HDPE), пригодный для вторичной переработки пластик нет. 2, обычно используется в качестве кувшинов для молока, бутылок с жидким стиральным порошком, уличной мебели, баков с маргарином, переносных канистр для бензина, систем распределения питьевой воды, водосточных труб и пакетов для продуктов.
  • Полиэтилен средней плотности (MDPE) используется для изготовления упаковочной пленки, мешков, газовых труб и фитингов.
  • Полиэтилен низкой плотности (LDPE) является гибким и используется в производстве отжимных бутылок, крышек кувшинов для молока, пакетов для розничных магазинов и линейного полиэтилена низкой плотности (LLDPE) в качестве стретч-пленки при транспортировке и обращении с коробками для товаров длительного пользования, а также в качестве упаковочной пленки. общехозяйственное пищевое покрытие.

Классификация и свойства полимерных материалов

Полимерные материалы в зависимости от состава или количества компонентов подразделяются на ненаполненные, представленные только одним связующим (полимером) – органическое стекло, в большинстве случаев полиэтиленовая пленка; наполненные, в состав которых для получения требуемого комплекса свойств могут входить наполнители, пластификаторы, стабилизаторы, отвердители, пигменты – стеклопластики, текстолит, линолеум и газонаполненные (пено- и поропласты) – пенополистирол, пенополиуретан и др.

В зависимости от физического состояния при нормальной температуре и вязкоупругих свойств полимерные материалы бывают жесткие, полужесткие, мягкие и эластичные.

Жесткие – это твердые, упругие материалы аморфной структуры, имеющие модуль упругости более 1000 МПа. Они хрупко разрушаются с незначительным удлинением при разрыве. К ним относят фенопласты, аминопласты, пластмассы на основе глифталевых и других полимеров.

Плотность полимерных материалов чаще всего находится в пределах 900.1800 кг/м3, т.е. они в 2 раза легче алюминия и в 5.6 раз легче стали. Вместе с тем плотность пористых полимерных материалов (пенопластов) может составлять 30..15 кг/м3, а плотных – превышать 2 000 кг/м3.

Прочность при сжатии полимерных материалов в большинстве случаев превосходит многие традиционные строительные материалы (бетон, кирпич, древесину) и составляет для ненаполненных полимеров около 70 МПа, армированных пластиков – более 200 МПа, при растяжении – для материалов с порошкообразным наполнителем 100.150 МПа, у стекловолокнистых – 276.414 МПа и более.

Теплопроводность таких материалов зависит от их пористости и технологии производства. У пено- и поропластов она составляет 0,03.0,04 Вт/м-К, у остальных – 0,2.0,7 Вт/мК или в 500.600 раз ниже, чем у металлов.

Недостатком многих полимерных материалов является низкая теплостойкость. Например, у большинства из них (на основе полистирола, поливинилхлорида, полиэтилена и других полимеров) теплостойкость составляет 60.80 °С. На основе фенолоформальдегидных смол теплостойкость может достигать 200 °С и лишь на кремнийорганических полимерах – 350 °С.

Являясь углеводородными соединениями, многие полимерные материалы сгораемы или имеют низкую огнестойкость. К легковоспламеняемым и сгораемым с обильным выделением сажи относятся изделия на основе полиэтилена, полистирола, производных целлюлозы. Трудно сгораемыми являются изделия на основе поливинилхлорида, полиэфирные стеклопластики, фенопласты, которые при повышенной температуре лишь обугливаются. Негорючими являются полимерные материалы с большим содержанием хлора, фтора или кремния.

Многие полимерные материалы при переработке, горении и даже нагревании выделяют опасные для здоровья вещества, такие как угарный газ, фенол, формальдегид, фосген, соляную кислоту и др. Значительным недостаткам их является также высокий коэффициент термического расширения – от 2 до 10 раз выше, чем у стали.

Полимерным материалам свойственна усадка при затвердевании, достигающая 5.8 %. У большей части из них низкий модуль упругости, значительно ниже, чем у металлов. При длительных нагрузках они обладают большой ползучестью. С повышением температуры ползучесть еще больше возрастает, что приводит к нежелательным деформациям.

Компании-производители и поставщики термопластов

  • Торговый дом Полиглас, Санкт Петербург – производство и продажа поликарбоната, полистирола, оргстекла;
  • Завод акустических конструкций Санкт Петербург – создание шумозащитных экранов;
  • ООО ЛТО-Пласт – цикл производства литьевых изделий, в том числе 3D проектирование;
  • ПАО Нижнекамскнефтехим нефтехимическое предприятие, включает в себя целую группу заводов;
  • Производственное коммерческое предприятие Ресурс Санкт Петербург – производитель пленок и вспененных материалов из полиэтилена;
  • Завод слоистых Пластиков, Санкт Петербург производит декоративный пластик;
  • Завод Пластик, Москва – переработка полимерных материалов методом экструзии;
  • Барьер ПАК Санкт Петербург – вакуумная упаковка промышленного электротехнического и электрощитового оборудования;
  • Амего Санкт Петербург – производство пластмасс под давлением;
  • Симона Рус Москва – инженерный пластик немецкого производителя с доставкой по России.

Как работает термопластавтомат

Процедура литья на данном оборудовании предполагает цикличность операций, за счет чего обучиться работе на нем относительно просто. Процесс управления осуществляется встроенным контроллером. Его можно программировать на изготовление разных изделий, начиная с момента прижатия литниковой втулки, заполнения формы и вплоть до съема детали.

Последовательность изготовления одного образца выглядит таким образом:

Начинается цикл со смыкания формы

На этом этапе важно избежать удара одной части об другую, для чего скорость движения плиты значительно снижают ближе к моменту соединения.
К литниковой втулке пресс-формы прижимается мундштук модуля пластификации. Данные блоки прижаты друг к другу весь период формирования пластмассового изделия.
За счет движения шнек-поршня вперед, в пресс-форму впрыскивается заранее нагретое и расплавленное сырье в узле пластикации

Благодаря наличию обратного клапана исключается выброс в предмундштуковую зону. Этот период разделяют на заполнение формы и сжатие расплава.
Полное заполнение формы с вытеснением воздуха через воздушные клапаны в пресс-форме.
Стадия максимальной выдержки изделия под давлением выполняется сразу после завершения заполнения формы. Происходит это в считаные мгновения.
В течение заданного программой данного устройства цикла происходит выдержка под давлением с одновременным охлаждением пресс-формы. При завершении этапа в предмундштуковой зоне остается подушка расплава размером 2-6 мм.
После завершения программы сдавливания аппарат переходит к этапу охлаждения без давления. В процессе снижения температуры давление в пресс-форме постепенно уменьшается вплоть до атмосферного.
Как только изделие остывает до температуры, достаточной для безопасного съема детали, происходит размыкание пресс-формы, извлечение изделия толкателями, повторное смыкание формы для заливки последующей порции расплавленного пластика.

В зависимости от особенностей конструкции термопластавтомата на этапе охлаждения без давления литниковая втулка может разъединяться от предмундштуковой зоны для исключения переливания в нее части полимерного материала или оставаться прижатой на весь цикл изготовления товаров. Во втором случае процесс охлаждения может проходить дольше, т.к. сырье вне формы остается в нагретом состоянии и температуры передается на изготавливаемую продукцию.

Полиэтилен

Полиэтилен – это вещество, которое создают за счёт химической реакции полимеризации этилена, большей частью обрабатывая при высоких температурах нефтяные газы или путем гидролиза нефтепродуктов. Одним из обязательных условий таких реакций является высокое давление, определенная температура, присутствие катализаторов и наличие кислорода. В промышленных масштабах процесс происходит в трубчатых реакторах, которые являются сложнейшим оборудованием.

Полиэтилен, производимый при высоком давлении – стойкий к химическим реакциям продукт, обладающий плотностью в районе 0,950г на см3. От других полимерных соединений он отличается высокой эластичностью (это свойство обеспечивают 45 процентов аморфной фазы). Выпускают полиэтилен в виде гранул, которые на специализированных предприятиях по производству продуктов из полимеров разогревают и деформируют таким образом, чтобы они приобрели необходимые формы.

Полиэтилен, создаваемый при низком давлении и температурах, не превышающих 80 градусов по Цельсию, называют полиэтиленом низкого давления. Его получают с использованием растворителя (чаще всего бензин) и определенных катализаторов. Свойства этого полимера отличаются от полиэтилена высокого давления, он является более хрупким и более подверженным старению.

В большей степени физико-механические свойства полиэтилена зависят от степени его полимеризации, иными словами, от веса одной молекулы, поэтому характеристики могут различаться. Так, прочность материала при растяжении в зависимости от степени полимеризации может варьироваться в пределах 18-46 МПа, его плотность в пределах 920-960 кг/м3, а разброс температуры плавления находится в пределах 110-125 градусов Цельсия.

Если долгое время на полиэтилен будет воздействовать половина от максимальной нагрузки, которую он способен выдерживать, полимер постепенно становиться более текучим. Нижний порог сохранения эластичности – 70 градусов Цельсия ниже нуля. Сам материал не только достаточно легко сваривать за счёт низких температур плавления, но и просто перерабатывать в другие изделия. Одними из основных недостатков можно назвать низкую теплостойкость и твёрдость полиэтилена, а также повышенную горючесть и высокую скорость старения под ультрафиолетом.

С частью отрицательных характеристик полиэтилена научились бороться. Для повышения стойкости полимера к окислительному процессу и последующему воздействию атмосферы используются разнообразные стабилизаторы. К примеру, если ввести в полиэтилен 2 процента сажи, общий срок его службы на открытом воздухе возрастёт в 30 раз.

Из полиэтилена производится множество различных изделий, начиная от пленок и труб, заканчивая электроизоляцией. Вспененный полиэтилен, выпускаемый в листовой форме, хорошо проявил себя в качестве звукоизоляционного и теплоизоляционного материала.

Свойства и применение

Термопластичными называют полимеры, которые при нагревании переходят из твердого состояния в мягкое, тягучее, а при охлаждении снова принимают твердую форму. Данные элементы получают реакцией полимеризации. Эта реакция проходит под большим давлением и без применения примесей. Реакция полимеризации стала возможна только благодаря современной химии и специализированной аппаратуре. Получить данный процесс в естественных условиях невозможно.

Свойства термопластичных полимеров вызваны способом соединения мономеров – соединение осуществляется в одном месте, в одном направлении. Другими словами, молекулы соединены между собой в линию при линейном виде, и в виде нескольких линий, сплетенных в паутину, при разветвленной структуре.

Термопластичные полимеры хорошо плавятся, а также растворяются в реагентах и растворителях. При испарении растворителя материал твердеет и приобретает прежние свойства. Это качество применяется при производстве различных клеев, лаков, красок, герметиков, замазок и других строительных растворов, имеющих в своем составе полимеры.

Из термопластичных полимеров выделяют:

  • полиолефины;
  • полиамиды;
  • поливинилхлориды;
  • фторопласты;
  • полиуретаны;
  • поликарбонаты;
  • полиметилметакрилаты;
  • полистирол.

На основании полимеров, исходных веществ и способов обработки выделяют следующие окончательные продуты:

  1. пластмассы;
  2. волокниты;
  3. пленки;
  4. покрытия;
  5. слоистые пластики;
  6. клеи.

Самое широкое применение термопластичные полимеры получили в строительстве при изготовлении материалов для изоляции, органических стекол, пленок и покрытий различной плотности и толщины, тонких волокон, а также в качестве связующих основ для клеев, штукатурок и теплоизоляционных материалов.

Из полимеров изготавливают бутылки и различные по форме сосуды, тару, трубы, детали машин оргтехники, компьютеров и электронного оборудования. А также используют при производстве напольного покрытия — линолеума, плитки, плинтусов, отделочных декоративных пленок, настенных панелей и пластика.

Что представляет собой термопластавтомат. | Компания «Ремтехстрой»

14.08.14

По сути, термопластавтомат – это машина для литья под давлением изделий из термопластов. Сами термопласты – это особые полимерные материалы, которые под воздействием температуры из твердого состояния переходят в эластичное, вязкотекучее, что позволяет многократно придавать им нужную форму.

Принцип работы термопластавтомата

Есть несколько разновидностей этих машин. Каждый вид имеет свою специфику и преимущества. Например, вертикальный термопластавтомат очень легко обслуживать, а горизонтальный позволяет изготовить более габаритные изделия. Однако конструкция несущественно влияет на принцип работы такой машины.

Принцип действия заключается в следующем.

  1. Засыпание гранулированного исходного материала в загрузочное устройство.
  2. Нагревание и накопление массы в специальном цилиндрическом резервуаре, подготовка ее к дальнейшим этапам процесса.
  3. Смыкание цилиндра с узлом, в котором происходит непосредственно формовка.
  4. После смыкания пластификатор (по сути – пресс) обеспечивает перемещение дозированной части расплава в форму.
  5. Сам пластификатор при этом занимает такое положение, чтобы полностью перекрыть отверстие, служащее для подачи материала в пресс-форму. Цилиндр также пока остается в сомкнутом положении.
  6. Изделие приобретает окончательную форму, остывая прямо в этом положении.
  7. Пластификатор, завершая цикл, отодвигается в исходное положение, одновременно подготавливая и подавая вперед новую порцию текучей массы термопласта.
  8. При открытии формы для облегчения изъятия готового изделия емкостной цилиндр может отодвигаться назад.
  9. Далее процесс продолжается, начиная с первого пункта.

Главной особенностью работы таких литьевых машин является цикличность, а также возможность частичной и полной автоматизации процесса, вплоть до подачи термопласта. Каждая из них позволяет менять внешний вид получаемых изделий путем замены пресс-формы. В каждом конкретном случае при необходимости в производстве совершенно нового типа изделий новые формы. Изготовление пресс-форм – процесс, требующий особой точности и высокой квалификации ответственного персонала.

Особенности и параметры выбора

Основные характеристики термопластов и являются критериями их выбора, тем, на что необходимо обратить особое внимание

Объем впрыска. Имеется в виду объем и масса материала, поступающая в форму

Хотя сейчас нет установленных параметров для этой характеристики, она является важной и должна соответствовать другим параметрам.

Усилие запирания формы. Для успешной работы машины по изготовлению пластиковых деталей усилие, с которым смыкаются части пресс-формы, считается самым важным

Его определяют литьевой площадью и давлением, распределяющим материал. Сила этого воздействия обязательно должна превышать или как минимум быть равной силе, возникающей внутри.

Расстояние, на котором расположены плиты друг от друга. Эта характеристика важна, так как именно она определяет максимальные габариты произведенных деталей. Есть еще один показатель – ход плит. Это возможность регулировки их положения, возможность раздвигать в достаточно широком диапазоне. Но это расстояние тоже не бесконечно. Эти два показателя тесно связаны друг с другом и с самой конструкцией термопластавтомата.

Скорость впрыска. От того, с какой скоростью заполняется материалом формовочная полость, зависят и возможная потеря давления, и размер слоя охлаждения при заполнении полости разбавленной массой полимера.

Часто имеют большое значение и другие показатели, например, производительность, называемая в этом случае пластикационной способностью, быстроходность и площадь литья.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector